Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Breed ; 43(8): 61, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37496827

ABSTRACT

Near isogenic F2 (NIF2) population frequently developed by conventional backcross has dramatically contributed to QTL identification in plants. Developing such a NIF2 population is time-consuming. Thus, it is urgent to rapidly produce a NIF2 population for QTL cloning. Here, we proposed a rapid QTL cloning strategy by generating a Pseudo-near isogenic F2 population (Pseudo-NIF2), which segregates at the target QTL but is fixed at other QTLs for the target trait. Nineteen QTLs for GL, GW, and TGW were detected in the F2 population from the cross between Zhenshan 97 and Egy316. To verify the efficiency of Pseudo-NIF2 in QTL quick cloning, the novel moderate QTL qGL10.1 which explained 9.1% and 5.6% of grain length variation in F2 and F2:3 populations was taken as an example. An F2 plant (F2-120), which segregated at qGL10.1 but fixed at other 8 QTLs for grain length, was screened to generate a Pseudo-NIF2 population by selfing cross. In the Pseudo-NIF2 population, the segregation ratio of plants with long grains to short grains fits 3:1, indicating that one gene controlled the variation of grain length. Based on the Pseudo-NIF2 and its progeny, qGL10.1 was fine mapped to a 19.3-kb region, where a gene OsMADS56 was verified as the candidate by functional polymorphism between parental alleles. Pseudo-NIF2 strategy is a rapid way for QTL cloning, which saves 3 to 4 cropping seasons compared to the conventional way. Applying the method for cloning QTL with moderate or major effects is promising. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01408-x.

2.
J Adv Res ; 28: 183-194, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33364055

ABSTRACT

INTRODUCTION: The multiparental population provides us the chance to identify superior alleles controlling a trait for genetic improvement. Genome wide association studies at bin level (bin-GWAS) are expected to be more power in QTL mapping than GWAS at SNP level (SNP-GWAS). OBJECTIVES: This study is to estimate genetic effects of QTL conferring grain appearance quality in rice by SNP-GWAS and bin-GWAS, compare their power in QTL mapping and identify the superior alleles of all detected QTL from 4 parents for genetic improvement. METHODS: A 4-way MAGIC population and its four founders were cultivated in two environments to dissect the genetic basis of rice grain appearance quality. Both SNP-GWAS and bin-GWAS were conducted for QTL mapping. Multiple comparison among 4 parental bin/alleles was used to identify the superior alleles. RESULTS: A total of 16 and 20 QTL associated with grain appearance quality were identified by SNP- and bin-GWAS, respectively. A minor chalkiness QTL qPGWC8.2/qDEC8 was assigned to a 30-kb genomic region, in which OsMH_08T0121900 is the potential candidate gene because its encoded protein, glucan endo-1,3-beta-glucosidase precursor is involved in the starch and sucrose metabolism pathway. The superior parental alleles for GS3, GL3.1, GW5, GW7, and Chalk5 and two QTLs were almost carried by the high-quality parents Cypress and Yuejingsimiao (YJSM), while the poor-quality parent Guichao-2 (GC2) always carried the inferior alleles. The top five recombinant inbred lines with the highest quality of grain shape and chalkiness traits all carried gene combinations of superior alleles. CONCLUSIONS: Both SNP- and bin-GWAS methods are encouraged for joint QTL mapping with MAGIC population. qPGWC8.2/qDEC8 is a novel candidate gene strongly associated with chalkiness. The superior alleles of GS3, GW5, GL3.1, GW7, Chalk5 and qPGWC8.2 were identified, and the pyramiding of these superior alleles is helpful to improve rice appearance quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...