Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 133: 112110, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652960

ABSTRACT

Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.


Subject(s)
AMP-Activated Protein Kinases , Colitis, Ulcerative , Dipeptidyl-Peptidase IV Inhibitors , NF-E2-Related Factor 2 , Oxazolone , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Vildagliptin , Animals , NF-E2-Related Factor 2/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Vildagliptin/pharmacology , Vildagliptin/therapeutic use , Rats , Proto-Oncogene Proteins c-akt/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Colon/pathology , Colon/drug effects , Cytokines/metabolism , Oxidative Stress/drug effects , Disease Models, Animal
2.
J Microsc Ultrastruct ; 11(2): 107-114, 2023.
Article in English | MEDLINE | ID: mdl-37448816

ABSTRACT

Background: Quercetin is a flavonoid, with antioxidant and autophagy-modulating activities. Cisplatin is one of the platinum-based anticancer drugs. Early development of peripheral neuropathy as an adverse effect of cisplatin interferes with the continuation of therapy. Oxidative stress and autophagy impairment may play a role. Aim: This study aimed to explore the possible protective effects of quercetin against cisplatin-induced peripheral neuropathy. Methods: Twenty-four male Wistar rats were divided into three groups: Group 1 (control group) and Group 2 (cisplatin group) where peripheral neuropathy was induced using single ip injection of cisplatin. Group 3 (cisplatin + quercetin group) received single ip injection of cisplatin and was then treated with quercetin for 14 days. At the end of the experiment, nociception was evaluated by tail immersion test, and then, blood was collected for analysis of nerve growth factor. Sciatic nerve was used to assess histopathological changes and light chain 3-II by immunohistochemical staining. Reduced glutathione, malondialdehyde, mTOR, and caspase-3 were estimated in sciatic nerve tissue homogenate. Results: This research work revealed that quercetin significantly improved cisplatin-induced nociceptive impairment, attenuated cisplatin-induced oxidative stress, autophagy, and apoptosis to protect against neuronal death. Conclusion: From the current study, quercetin can act as a promising protective agent against cisplatin-induced peripheral neuropathy.

3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498902

ABSTRACT

Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 µg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1ß, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.


Subject(s)
Adrenomedullin , Renal Insufficiency , Animals , Male , Rats , Adrenomedullin/pharmacology , Apoptosis , Doxorubicin/toxicity , Inflammation , Inflammation Mediators , Oxidative Stress , Pyroptosis , Rats, Wistar , Renal Insufficiency/chemically induced , Renal Insufficiency/drug therapy
4.
Molecules ; 27(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744783

ABSTRACT

Introduction. Vigabatrin (VGB) is an antiepileptic drug that acts to irreversibly inhibit the γ-aminobutyric acid (GABA) transaminase enzyme, elevating GABA levels. Broad studies have established that long-term treatment and/or high doses of VGB lead to variable visual defects. However, little attention has been paid to its other side effects, especially those demonstrating cerebellar involvement. Sodium glucose-linked co-transporter 2 (SGLT2) inhibitors are antidiabetic agents with protective effects far greater than expected based on their anti-hyperglycemic effect. Method. Our study herein was designed to investigate the possible ameliorative effect of empagliflozin, the SGLT2 inhibitors, in VGB-induced cerebellar toxicity. A total of 40 male Wistar rats were allocated equally into 4 groups: Group I: control group; Group II: VGB group; Group III empagliflozin treated VGB group; and Group IV: empagliflozin treated group. All groups were subjected to the detection of cerebellar messenger RNA gene expression of silent mating type information regulation 2 homolog 1 (SIRT1) and Nucleoporin p62 (P62). Mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), and beclin1 levels were assessed by the ELISA technique while malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected spectrophotometrically. Immuno-histochemical studies, focusing on glial fibrillary acidic protein (GFAP) and S100 were performed, and the optical color density and the mean area percentage of GFAP positive astrocytes and the number of S 100 positive cells were also counted. Results. Following empagliflozin treatment, we documented significant upregulation of both SIRT1 and P62 mRNA gene expression. Additionally, AMPK, Beclin1 levels, and SOD activity were significantly improved, while both mTOR and MDA levels were significantly reduced. Conclusions. We concluded for the first time that empagliflozin efficiently ameliorated the VGB-induced disrupted mTOR/AMPK/SIRT-1 signaling axis with subsequent improvement of the autophagy machinery and mitigation of the oxidative and inflammatory cellular environment, paving the way for an innovative therapeutic potential in managing VGB-induced neurotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Vigabatrin , Animals , Anticonvulsants/pharmacology , Beclin-1 , Benzhydryl Compounds , Glucosides , Male , Mammals , Rats , Rats, Wistar , Signal Transduction , Sirtuin 1/genetics , Superoxide Dismutase , TOR Serine-Threonine Kinases , Vigabatrin/adverse effects , gamma-Aminobutyric Acid
5.
Stem Cell Res Ther ; 12(1): 388, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34233746

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-age women. Excessive inflammation and elevated androgen production from ovarian theca cells are key features of PCOS. Human bone marrow mesenchymal stem cells (BM-hMSC) and their secreted factors (secretome) exhibit robust anti-inflammatory capabilities in various biological systems. We evaluated the therapeutic efficacy of BM-hMSC and its secretome in both in vitro and in vivo PCOS models. METHODS: For in vitro experiment, we treated conditioned media from BM-hMSC to androgen-producing H293R cells and analyzed androgen-producing gene expression. For in vivo experiment, BM-hMSC were implanted into letrozole (LTZ)-induced PCOS mouse model. BM-hMSC effect in androgen-producing cells or PCOS model mice was assessed by monitoring cell proliferation (immunohistochemistry), steroidogenic gene expression (quantitative real-time polymerase chain reaction [qRT-PCR] and Western blot, animal tissue assay (H&E staining), and fertility by pup delivery. RESULTS: BM-hMSC significantly downregulate steroidogenic gene expression, curb inflammation, and restore fertility in treated PCOS animals. The anti-inflammatory cytokine interleukin-10 (IL-10) played a key role in mediating the effects of BM-hMSC in our PCOS models. We demonstrated that BM-hMSC treatment was improved in metabolic and reproductive markers in our PCOS model and able to restore fertility. CONCLUSION: Our study demonstrates for the first time the efficacy of intra-ovarian injection of BM-hMSC or its secretome to treat PCOS-related phenotypes, including both metabolic and reproductive dysfunction. This approach may represent a novel therapeutic option for women with PCOS. Our results suggest that BM-hMSC can reverse PCOS-induced inflammation through IL-10 secretion. BM-hMSC might be a novel and robust therapeutic approach for PCOS treatment.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Polycystic Ovary Syndrome , Animals , Female , Fertility , Humans , Interleukin-10/genetics , Mice , Polycystic Ovary Syndrome/therapy
6.
Cell Transplant ; 30: 963689720988502, 2021.
Article in English | MEDLINE | ID: mdl-33593078

ABSTRACT

Primary ovarian insufficiency (POI), a condition in which there is a loss of ovarian function before the age of 40 years, leads to amenorrhea and infertility. In our previously published studies, we demonstrated recovery of POI, correction of serum sex hormone levels, increase in the granulosa cell population, and restoration of fertility in a chemotherapy-induced POI mouse model after intraovarian transplantation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While hBM-MSC may be a promising cell source for treatment of POI, there are few reports on the safety of stem cell-based therapy for POI. For future clinical applications, the safety of allogenic hBM-MSCs for the treatment of POI through intraovarian engraftment needs to be addressed and verified in appropriate preclinical models. In this study, we induced POI in C57/BL6 mice using chemotherapy, then treated the mice with hBM-MSCs (500,000 cells/ovary) by intraovarian injection. After hBM-MSC treatment, we analyzed the migration of engrafted cells by genomic DNA polymerase chain reaction (PCR) using a human-specific ALU repeat and by whole-body sectioning on a cryo-imaging system. We examined the possibility of transfer of human DNA from the hBM-MSCs to the resulting offspring, and compared the growth rate of offspring to that of normal mice and hBM-MSC-treated mice. We found that engrafted hBM-MSCs were detected only in mouse ovaries and did not migrate into any other major organs including the heart, lungs, and liver. Further, we found that no human DNA was transferred into the fetus. Interestingly, the engrafted cells gradually decreased in number and had mostly disappeared after 4 weeks. Our study demonstrates that intraovarian transplantation of hBM-MSCs could be a safe stem cell-based therapy to restore fertility in POI patients.


Subject(s)
Injections, Intra-Arterial/methods , Mesenchymal Stem Cell Transplantation/methods , Primary Ovarian Insufficiency/therapy , Adult , Animals , Disease Models, Animal , Female , Humans , Mice , Primary Ovarian Insufficiency/pathology
7.
Int Immunopharmacol ; 78: 106068, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31835085

ABSTRACT

AIMS: Cancer is a major worldwide health problem. Cancer cells express opioid growth factor (OGF) which controls their growth. Naltrexone in low dose (LDN) blocks opioid receptors intermittently and controls the replication of cancer cells. The aim of this study was to investigate the effect of LDN and its chemotherapeutic additive effect on the growth of solid Ehrlich carcinoma in mice with focus on the OGFr and immune responses. MAIN METHODS: Sixty female Swiss albino mice were assigned into 5 groups (n: 12 mice each): (i): normal control, (ii): Solid Ehrlich carcinoma (SEC), (iii): SEC treated with LDN, (iv): SEC treated with 5-fluorouracil (5-FU), (v): SEC treated with LDN + 5-FU. All drugs were started when the tumor became palpable on 9th day. At the end of the study animals were sacrificed, blood and tissue samples were collected. Tumor weight and volume were measured. Splenocytes and myeloid derived suppressor cells (MDSC) were counted. Tumor expression of opioid growth factor receptors (OGFr), serum level of IFN-γ, tumor histopathology (H&E) and immunohistochemistry staining of p21, p53, Bcl2 were assessed. KEY FINDINGS: All drug-treated groups showed reduction in tumor weight and volume, significant increase of splenocyte with tendency to reduce MDSC cell counts. LDN led to significant increase in OGFr both in solo and in combination with 5FU. Serum IFN-γ is significantly increased by LDN but decreased by 5-FU. Also, LDN and 5FU increased immunehistochemical staining of p21 while decreased immunostaining of Bcl2. In animals treated with a combination of LDN and 5FU a maximal downregulation of the antiapoptotic mediator BCL2 was observed. SIGNIFICANCE: The current study suggested that LDN may play a role in inhibiting cancer cell growth and highlights the possibility of promising combination with cancer chemotherapeutics, which guarantee further clinical studies for approval.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Ehrlich Tumor/drug therapy , Naltrexone/administration & dosage , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Opioid/metabolism , Animals , Apoptosis/drug effects , Carcinoma, Ehrlich Tumor/immunology , Carcinoma, Ehrlich Tumor/pathology , Cell Line, Tumor/transplantation , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Female , Fluorouracil/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunologic Factors/administration & dosage , Mice , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Off-Label Use
SELECTION OF CITATIONS
SEARCH DETAIL
...