Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Cereb Cortex ; 34(13): 84-93, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696598

ABSTRACT

Multimodal integration is crucial for human interaction, in particular for social communication, which relies on integrating information from various sensory modalities. Recently a third visual pathway specialized in social perception was proposed, which includes the right superior temporal sulcus (STS) playing a key role in processing socially relevant cues and high-level social perception. Importantly, it has also recently been proposed that the left STS contributes to audiovisual integration of speech processing. In this article, we propose that brain areas along the right STS that support multimodal integration for social perception and cognition can be considered homologs to those in the left, language-dominant hemisphere, sustaining multimodal integration of speech and semantic concepts fundamental for social communication. Emphasizing the significance of the left STS in multimodal integration and associated processes such as multimodal attention to socially relevant stimuli, we underscore its potential relevance in comprehending neurodevelopmental conditions characterized by challenges in social communication such as autism spectrum disorder (ASD). Further research into this left lateral processing stream holds the promise of enhancing our understanding of social communication in both typical development and ASD, which may lead to more effective interventions that could improve the quality of life for individuals with atypical neurodevelopment.


Subject(s)
Social Cognition , Speech Perception , Temporal Lobe , Humans , Temporal Lobe/physiology , Temporal Lobe/physiopathology , Speech Perception/physiology , Social Perception , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Functional Laterality/physiology
2.
J Med Ethics ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802142

ABSTRACT

The current human rights framework can shield people from many of the risks associated with neurotechnological applications. However, it has been argued that we need either to articulate new rights or reconceptualise existing ones in order to prevent some of these risks. In this paper, we would like to address the recent discussion about whether current reconceptualisations of the right to mental integrity identify an ethical dimension that is not covered by existing moral and/or legal rights. The main challenge of these proposals is that they make mental integrity indistinguishable from autonomy. They define mental integrity in terms of the control we can have over our mental states, which seems to be part of the authenticity condition for autonomous action. Based on a fairly comprehensive notion of mental health (ie, a notion that is not limited to the mere absence of illness), we propose an alternative view according to which mental integrity can be characterised both as a positive right to (medical and non-medical) interventions that restore and sustain mental and neural function, and promote its development and a negative right protecting people from interventions that threaten or undermine these functions or their development. We will argue that this notion is dissociated from cognitive control and therefore can be adequately distinguished from autonomy.

3.
Front Psychol ; 14: 1061381, 2023.
Article in English | MEDLINE | ID: mdl-37138983

ABSTRACT

Multimodal imitation of actions, gestures and vocal production is a hallmark of the evolution of human communication, as both, vocal learning and visual-gestural imitation, were crucial factors that facilitated the evolution of speech and singing. Comparative evidence has revealed that humans are an odd case in this respect, as the case for multimodal imitation is barely documented in non-human animals. While there is evidence of vocal learning in birds and in mammals like bats, elephants and marine mammals, evidence in both domains, vocal and gestural, exists for two Psittacine birds (budgerigars and grey parrots) and cetaceans only. Moreover, it draws attention to the apparent absence of vocal imitation (with just a few cases reported for vocal fold control in an orangutan and a gorilla and a prolonged development of vocal plasticity in marmosets) and even for imitation of intransitive actions (not object related) in monkeys and apes in the wild. Even after training, the evidence for productive or "true imitation" (copy of a novel behavior, i.e., not pre-existent in the observer's behavioral repertoire) in both domains is scarce. Here we review the evidence of multimodal imitation in cetaceans, one of the few living mammalian species that have been reported to display multimodal imitative learning besides humans, and their role in sociality, communication and group cultures. We propose that cetacean multimodal imitation was acquired in parallel with the evolution and development of behavioral synchrony and multimodal organization of sensorimotor information, supporting volitional motor control of their vocal system and audio-echoic-visual voices, body posture and movement integration.

4.
Heliyon ; 8(12): e12215, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36578387

ABSTRACT

The ability of an organism to voluntarily control the stimuli onset modulates perceptual and attentional functions. Since stimulus encoding is an essential component of working memory (WM), we conjectured that controlling the initiation of the perceptual process would positively modulate WM. To corroborate this proposition, we tested twenty-five healthy subjects in a modified-Sternberg WM task under three stimuli presentation conditions: an automatic presentation of the stimuli, a self-initiated presentation of the stimuli (through a button press), and a self-initiated presentation with random-delay stimuli onset. Concurrently, we recorded the subjects' electroencephalographic signals during WM encoding. We found that the self-initiated condition was associated with better WM accuracy, and earlier latencies of N1, P2 and P3 evoked potential components representing visual, attentional and mental review of the stimuli processes, respectively. Our work demonstrates that self-initiated stimuli enhance WM performance and accelerate early visual and attentional processes deployed during WM encoding. We also found that self-initiated stimuli correlate with an increased attentional state compared to the other two conditions, suggesting a role for temporal stimuli predictability. Our study remarks on the relevance of self-control of the stimuli onset in sensory, attentional and memory updating processing for WM.

5.
Neuroimage ; 262: 119516, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35931308

ABSTRACT

Detection of novel stimuli that violate statistical regularities in the sensory scene is of paramount importance for the survival of biological organisms. Event-related potentials, phasic increases in pupil size, and evoked changes in oscillatory power have been proposed as markers of sensory novelty detection. However, how conscious access to novelty modulates these different brain responses is not well understood. Here, we studied the neural responses to sensory novelty in the auditory modality with and without conscious access. We identified individual thresholds for conscious auditory discrimination and presented to our participants sequences of tones, where the last stimulus could be another standard, a subthreshold target or a suprathreshold target. Participants were instructed to report whether the last tone of each sequence was the same or different from those preceding it. Results indicate that attentional orientation to behaviorally relevant stimuli and overt decision-making mechanisms, indexed by the P3 event-related response and reaction times, best predict whether a novel stimulus will be consciously accessed. Theta power and pupil size do not predict conscious access to novelty, but instead reflect information maintenance and unexpected sensory uncertainty. These results highlight the interplay between bottom-up and top-down mechanisms and how the brain weights neural responses to novelty and uncertainty during perception and goal-directed behavior.


Subject(s)
Consciousness , Electroencephalography , Acoustic Stimulation , Attention/physiology , Auditory Perception/physiology , Consciousness/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Humans
6.
JCO Glob Oncol ; 8: e2200123, 2022 08.
Article in English | MEDLINE | ID: mdl-35994695

ABSTRACT

On February 24, 2022, a war began within the Ukrainian borders. At least 3.0 million Ukrainian inhabitants have already fled the country. Critical infrastructure, including hospitals, has been damaged. Children with cancer were urgently transported to foreign countries, in an effort to minimize interruption of their life-saving treatments. Most adults did not have that option. War breeds cancer-delaying diagnosis, preventing treatment, and increasing risk. We project that a modest delay in care of only 4 months for five prevalent types of cancer will lead to an excess of over 3,600 cancer deaths in the subsequent years. It is critical that we establish plans to mitigate that risk as soon as possible.


Subject(s)
Neoplasms , Research , Adult , Armed Conflicts , Child , Humans , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/therapy , Ukraine/epidemiology
7.
Mol Psychiatry ; 27(8): 3328-3342, 2022 08.
Article in English | MEDLINE | ID: mdl-35501408

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Male , Female , Autistic Disorder/genetics , TRPC6 Cation Channel/genetics , Autism Spectrum Disorder/genetics , Drosophila , Drosophila melanogaster/genetics , Mutation/genetics
8.
Front Psychol ; 13: 829083, 2022.
Article in English | MEDLINE | ID: mdl-35432052

ABSTRACT

While influential works since the 1970s have widely assumed that imitation is an innate skill in both human and non-human primate neonates, recent empirical studies and meta-analyses have challenged this view, indicating other forms of reward-based learning as relevant factors in the development of social behavior. The visual input translation into matching motor output that underlies imitation abilities instead seems to develop along with social interactions and sensorimotor experience during infancy and childhood. Recently, a new visual stream has been identified in both human and non-human primate brains, updating the dual visual stream model. This third pathway is thought to be specialized for dynamics aspects of social perceptions such as eye-gaze, facial expression and crucially for audio-visual integration of speech. Here, we review empirical studies addressing an understudied but crucial aspect of speech and communication, namely the processing of visual orofacial cues (i.e., the perception of a speaker's lips and tongue movements) and its integration with vocal auditory cues. Along this review, we offer new insights from our understanding of speech as the product of evolution and development of a rhythmic and multimodal organization of sensorimotor brain networks, supporting volitional motor control of the upper vocal tract and audio-visual voices-faces integration.

9.
PLoS One ; 17(1): e0262004, 2022.
Article in English | MEDLINE | ID: mdl-35041646

ABSTRACT

Autism Spectrum Disorder (ASD) is a heterogeneous condition that affects face perception. Evidence shows that there are differences in face perception associated with the processing of low spatial frequency (LSF) and high spatial frequency (HSF) of visual stimuli between non-symptomatic relatives of individuals with autism (broader autism phenotype, BAP) and typically developing individuals. However, the neural mechanisms involved in these differences are not fully understood. Here we tested whether face-sensitive event related potentials could serve as neuronal markers of differential spatial frequency processing, and whether these potentials could differentiate non-symptomatic parents of children with autism (pASD) from parents of typically developing children (pTD). To this end, we performed electroencephalographic recordings of both groups of parents while they had to recognize emotions of face pictures composed of the same or different emotions (happiness or anger) presented in different spatial frequencies. We found no significant differences in the accuracy between groups but lower amplitude modulation in the Late Positive Potential activity in pASD. Source analysis showed a difference in the right posterior part of the superior temporal region that correlated with ASD symptomatology of the child. These results reveal differences in brain processing of recognition of facial emotion in BAP that could be a precursor of ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Cerebral Cortex/physiopathology , Electroencephalography , Emotions , Evoked Potentials , Facial Expression , Facial Recognition , Adult , Female , Humans , Male
10.
Prog Neurobiol ; 208: 102186, 2022 01.
Article in English | MEDLINE | ID: mdl-34780864

ABSTRACT

The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.


Subject(s)
Axons , Corpus Callosum , Animals , Axons/physiology , Brain , Corpus Callosum/physiology , Humans , Neural Pathways/physiology , Neurons
11.
Front Neuroanat ; 15: 703835, 2021.
Article in English | MEDLINE | ID: mdl-34248511

ABSTRACT

Reissner's fiber (RF) is a secreted filament that floats in the neural canal of chordates. Since its discovery in 1860, there has been no agreement on its primary function, and its strong conservation across chordate species has remained a mystery for comparative neuroanatomists. Several findings, including the chemical composition and the phylogenetic history of RF, clinical observations associating RF with the development of the neural canal, and more recent studies suggesting that RF is needed to develop a straight vertebral column, may shed light on the functions of this structure across chordates. In this article, we will briefly review the evidence mentioned above to suggest a role of RF in the origin of fundamental innovations of the chordate body plan, especially the elongation of the neural tube and maintenance of the body axis. We will also mention the relevance of RF for medical conditions like hydrocephalus, scoliosis of the vertebral spine and possibly regeneration of the spinal cord.

12.
Front Neurosci ; 14: 554731, 2020.
Article in English | MEDLINE | ID: mdl-33132820

ABSTRACT

Attention and working memory (WM) are core components of executive functions, and they can be enhanced by training. One activity that has shown to improve executive functions is musical training, but the brain networks underlying these improvements are not well known. We aimed to identify, using functional MRI (fMRI), these networks in children who regularly learn and play a musical instrument. Girls and boys aged 10-13 with and without musical training completed an attention and WM task while their brain activity was measured with fMRI. Participants were presented with a pair of bimodal stimuli (auditory and visual) and were asked to pay attention only to the auditory, only to the visual, or to both at the same time. The stimuli were afterward tested with a memory task in order to confirm attention allocation. Both groups had higher accuracy on items that they were instructed to attend, but musicians had an overall better performance on both memory tasks across attention conditions. In line with this, musicians showed higher activation than controls in cognitive control regions such as the fronto-parietal control network during all encoding phases. In addition, facilitated encoding of auditory stimuli in musicians was positively correlated with years of training and higher activity in the left inferior frontal gyrus and the left supramarginal gyrus, structures that support the phonological loop. Taken together, our results elucidate the neural dynamics that underlie improved bimodal attention and WM of musically trained children and contribute new knowledge to this model of brain plasticity.

13.
Front Syst Neurosci ; 14: 37, 2020.
Article in English | MEDLINE | ID: mdl-32625068

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder in which children present prefrontal cortex (PFC) related functions deficit. Proactive cognitive control is a process that anticipates the requirement of cognitive control and crucially depends on the maturity of the PFC. Since this process is important to ADHD symptomatology, we here test the hypothesis that children with ADHD have proactive cognitive control impairments and that these impairments are reflected in the PFC oscillatory activity. We recorded EEG signals from 29 male children with ADHD and 25 typically developing (TD) male children while they performed a Go-Nogo task, where the likelihood of a Nogo stimulus increased while a sequence of consecutive Go stimuli elapsed. TD children showed proactive cognitive control by increasing their reaction time (RT) concerning the number of preceding Go stimuli, whereas children with ADHD did not. This adaptation was related to modulations in both P3a potential and lateral prefrontal theta oscillation for TD children. Children with ADHD as a group did not demonstrate either P3a or theta modulation. But, individual variation in theta activity was correlated with the ADHD symptomatology. The results depict a neurobiological mechanism of proactive cognitive control impairments in children with ADHD.

14.
Sci Rep ; 10(1): 9310, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518271

ABSTRACT

Working Memory (WM) impairment is the most common cognitive deficit of patients with Multiple Sclerosis (MS). However, evidence of its neurobiological mechanisms is scarce. Here we recorded electroencephalographic activity of twenty patients with relapsing-remitting MS and minimal cognitive deficit, and 20 healthy control (HC) subjects while they solved a WM task. In spite of similar performance, the HC group demonstrated both a correlation between temporoparietal theta activity and memory load, and a correlation between medial frontal theta activity and successful memory performances. MS patients did not show theses correlations leading significant differences between groups. Moreover, cortical connectivity analyses using granger causality and phase-amplitude coupling between theta and gamma revealed that HC group, but not MS group, presented a load-modulated progression of the frontal-to-parietal connectivity. This connectivity correlated with working memory capacity in MS groups. This early alterations in the oscillatory dynamics underlaying working memory could be useful for plan therapeutic interventions.


Subject(s)
Frontal Lobe/physiopathology , Memory Disorders/physiopathology , Memory, Short-Term/physiology , Multiple Sclerosis/physiopathology , Multiple Sclerosis/psychology , Parietal Lobe/physiopathology , Adult , Case-Control Studies , Electroencephalography , Female , Frontal Lobe/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/etiology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Parietal Lobe/diagnostic imaging , Reaction Time , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology
15.
Sci Rep ; 10(1): 7771, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385310

ABSTRACT

Working memory (WM) impairments in ADHD have been consistently reported along with deficits in attentional control. Yet, it is not clear which specific WM processes are affected in this condition. A deficient coupling between attention and WM has been reported. Nevertheless, most studies focus on the capacity to retain information rather than on the attention-dependent stages of encoding and retrieval. The current study uses a visual short-term memory binding task, measuring both behavioral and electrophysiological responses to characterize WM encoding, binding and retrieval comparing ADHD and non-ADHD matched adolescents. ADHD exhibited poorer accuracy and larger reaction times than non-ADHD on all conditions but especially when a change across encoding and test displays occurred. Binding manipulation affected equally both groups. Encoding P3 was larger in the non-ADHD group. Retrieval P3 discriminated change only in the non-ADHD group. Binding-dependent ERP modulations did not reveal group differences. Encoding and retrieval P3 were significantly correlated only in non-ADHD. These results suggest that while binding processes seem to be intact in ADHD, attention-related encoding and retrieval processes are compromised, resulting in a failure in the prioritization of relevant information. This new evidence can also inform recent theories of binding in visual WM.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Attention , Cognition , Memory, Short-Term , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnosis , Event-Related Potentials, P300 , Evoked Potentials , Female , Humans , Male , Reaction Time
16.
Prog Brain Res ; 250: 345-371, 2019.
Article in English | MEDLINE | ID: mdl-31703907

ABSTRACT

In recent years, there have been important additions to the classical model of speech processing as originally depicted by the Broca-Wernicke model consisting of an anterior, productive region and a posterior, perceptive region, both connected via the arcuate fasciculus. The modern view implies a separation into a dorsal and a ventral pathway conveying different kinds of linguistic information, which parallels the organization of the visual system. Furthermore, this organization is highly conserved in evolution and can be seen as the neural scaffolding from which the speech networks originated. In this chapter we emphasize that the speech networks are embedded in a multimodal system encompassing audio-vocal and visuo-vocal connections, which can be referred to an ancestral audio-visuo-motor pathway present in nonhuman primates. Likewise, we propose a trimodal repertoire for speech processing and acquisition involving auditory, visual and motor representations of the basic elements of speech: phoneme, observation of mouth movements, and articulatory processes. Finally, we discuss this proposal in the context of a scenario for early speech acquisition in infants and in human evolution.


Subject(s)
Biological Evolution , Cerebral Cortex/physiology , Language , Motor Activity/physiology , Nerve Net/physiology , Speech Perception/physiology , Speech/physiology , Visual Perception/physiology , Animals , Humans
17.
Evol Dev ; 21(6): 330-341, 2019 11.
Article in English | MEDLINE | ID: mdl-31441209

ABSTRACT

Although the cerebral hemispheres are among the defining characters of vertebrates, each vertebrate class is characterized by a different anatomical organization of this structure, which has become highly problematic for comparative neurobiology. In this article, we discuss some mechanisms involved in the generation of this morphological divergence, based on simple spatial constraints for neurogenesis and mechanical forces generated by increasing neuronal numbers during development, and the different cellular strategies used by each group to overcome these limitations. We expect this view to contribute to unify the diverging vertebrate brain morphologies into general, simple mechanisms that help to establish homologies across groups.


Subject(s)
Biological Evolution , Prosencephalon , Vertebrates , Animals , Prosencephalon/anatomy & histology , Prosencephalon/physiology , Vertebrates/anatomy & histology , Vertebrates/physiology
18.
Sci Data ; 6(1): 25, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975993

ABSTRACT

Attention Deficit/Hyperactive Disorder (ADHD) is diagnosed based on observed behavioral outcomes alone. Given that some brain attentional networks involve circuits that control the eye pupil, we monitored pupil size in ADHD- diagnosed children and also in control children during a visuospatial working memory task. We present here the full dataset, consisting of pupil size time series for each trial and subject. There are data from, 22 control, and 28 ADHD-diagnosed children. There are also data from a subset of 17 ADHD children that performed the task twice, on- and off-medication. In addition, our dataset also includes gaze position data from each trial and subject, and also scores from the Weschler Intelligence Scale for Children. In this context, the dataset can serve as a resource to analyze dynamic eye movement and pupil changes as a function of known behavioral changes and scores in neuropsychological tests, which reflect neurocognitive processing.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cognition , Eye Movements , Attention , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Child , Female , Humans , Male , Neuropsychological Tests , Pupil/physiology
19.
Cortex ; 113: 210-228, 2019 04.
Article in English | MEDLINE | ID: mdl-30677619

ABSTRACT

A precursor of adult social functioning is joint attention (JA), which is the capacity to share attention on an object with another person. JA precedes the development of the capacity to attribute mental states to others (i.e., mentalization or theory of mind). The neural mechanisms involved in the development of mentalization are not fully understood. Electroencephalographic recordings were made of children while they watched stimuli on a screen and their interaction with the experimenter was assessed. We tested whether neuronal activity preceding JA correlates with mentalization in typically developing (TD) children and whether this activity is impaired in children with autistic spectrum disorder (ASD) who evidence deficits in JA and mentalization skills. Both groups exhibited JA behavior with comparable frequency. TD children displayed a higher amplitude of negative central (Nc) event-related potential preceding JA behavior (∼500 msec after stimuli presentation), than did the ASD group. Previous to JA behavior, TD children demonstrated beta oscillatory activity in the temporoparietal region, while ASD children did not show an increase in beta activity. In both groups, the beta power correlated with mentalization, suggesting that this specific neuronal mechanism is involved in mentalization, which used during social interaction.


Subject(s)
Attention/physiology , Autism Spectrum Disorder/physiopathology , Beta Rhythm/physiology , Brain/physiopathology , Mentalization/physiology , Theory of Mind/physiology , Autism Spectrum Disorder/psychology , Child, Preschool , Electroencephalography , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...