Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 712: 136487, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31931226

ABSTRACT

This study investigated changes in metabolite compositions over three generation exposure of wheat (Triticum aestivum) to cerium oxide nanoparticles (CeO2-NPs) in low or high nitrogen soil. The goal was to determine if CeO2-NPs affects grains/seeds quality across generational exposure. Seeds from plants exposed for two generations to 0 or 500 mg CeO2-NPs per kg soil treatment were cultivated for third year in low or high nitrogen soil amended with 0 or 500 mg CeO2-NPs per kg soil. Metabolomics identified 180 metabolites. Multivariate analysis showed that continuous generational exposure to CeO2-NPs altered 18 and 11 metabolites in low N and high N grains, respectively. Interestingly, DNA/RNA metabolites such as thymidine, uracil, guanosine, deoxyguanosine, adenosine monophosphate were affected; a finding that has not been observed on DNA/RNA metabolites of plants exposed to nanoparticles. Nicotianamine, a metabolite playing crucial role in Fe storage in grains, decreased by 33% in grains continuously exposed for three generations to CeO2-NPs at high N soil. Notably, these grains also exhibited a concomitant decrease of 13-16% in Fe concentration. Together these changes suggest alterations in grain quality or implications in ecosystem processes (i.e., productivity, nutrient cycling, ecosystem stability) of progeny plants generationally-exposed to CeO2-NPs.


Subject(s)
Metal Nanoparticles , Cerium , Ecosystem , Metabolomics , Triticum
2.
J Hazard Mater ; 384: 121364, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31607583

ABSTRACT

This study investigated the effects of third generation exposure to cerium oxide nanoparticles (CeO2-NPs) on biomass, elemental and 15N uptake, and fatty acid contents of wheat (Triticum aestivum). At low or high nitrogen treatment (48 or 112 mg N), seeds exposed for two generations to 0 or 500 mg CeO2-NPs per kg soil treatment were cultivated for third year in soil amended with 0 or 500 mg CeO2-NPs per kg soil. The results showed that parental and current exposures to CeO2-NPs increased the root biomass in daughter plants with greater magnitude of increase at low N than high N. When wheat received CeO2-NPs in year 3, root elemental contents increased primarily at low N, suggesting an important role of soil N availability in altering root nutrient acquisition. The δ15N ratios, previously shown to be altered by CeO2-NPs, were only affected by current and not parental exposure, indicating effects on N uptake and/or metabolism are not transferred from one generation to the next. Seed fatty acid composition was also influenced both by prior and current exposure to CeO2-NPs. The results suggest that risk assessments of NP exposure may need to include longer-term, transgenerational effects on growth and grain quality of agronomic crops.


Subject(s)
Cerium/pharmacology , Nanoparticles/chemistry , Nitrogen/metabolism , Soil/chemistry , Triticum/drug effects , Triticum/growth & development , Biomass , Cerium/chemistry , Edible Grain/drug effects , Edible Grain/growth & development , Edible Grain/metabolism , Fatty Acids/metabolism , Models, Theoretical , Nitrogen/analysis , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL