Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 26(6): 1187-1193, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31516348

ABSTRACT

Off-road vehicle driving is considered as main contributor to land degradation in arid regions. This study examined the impact of off-road vehicles (ORV) on soil and vegetation in a natural recreational desert meadow of Raudhat Khuraim, Saudi Arabia. Vegetation canopy cover and plant height away from road tracks were assessed. Also, species density and canopy cover, bare ground cover and soil attributes were assessed in four microhabitats; tracks, inter-tracks, verges, and away from vehicle tracks (undisturbed natural areas). Results show that the cover of forbs and grasses was negatively associated with distance from road verges. It was observed that the height of woody species responded negatively to distance away from tracks. Cover of native species decreased under verge, inter-track and track microhabitats giving more opportunity for weeds to flourish. Bare ground was highest (60.7%) in tracks. ORV impact on soil bulk density was clear with an increase of 38% under tracks compared to soils of undisturbed natural vegetation and a similar decrease in porosity was observed. On the other hand, soil electrical conductivity was significantly higher (5.45 mS cm-1) under disturbance compared to 1.32 mS cm-1 in undisturbed natural vegetation. Organic matter and nitrogen were not affected significantly by ORV disturbance. The results emphasize that managing off-road vehicle driving is essential for conserving native vegetation.

2.
J Agric Food Chem ; 66(33): 8805-8813, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30102041

ABSTRACT

Lentil, a moderate-energy high-protein pulse crop, provides significant amounts of essential nutrients for healthy living. The objective of this study was to determine if a lentil-based diet affects food and energy intake, body weight, percent body fat, liver weight, and body plasma triacylglycerols (TGs) as well as the composition of fecal microbiota in rats. A total of 36 Sprague-Dawley rats were treated with either a standard diet, a 3.5% high amylose corn starch diet, or a 70.8% red lentil diet for 6 weeks. By week 6, rats fed the lentil diet had significantly lower mean body weight (443 ± 47 g/rat) than those fed the control (511 ± 51 g/rat) or corn (502 ± 38 g/rat) diets. Further, mean percent body fat and TG concentration were lower, and lean body mass was higher in rats fed the lentil diet than those fed the corn diet. Fecal abundance of Actinobacteria and Bacteriodetes were greater in rats fed the lentil or corn starch diets than those fed the control diet. Fecal abundance of Firmicutes, a bacterial phylum comprising multiple pathogenic species, decreased in rats fed the lentil and high-amylose corn starch diets vs the control diet. The lentil-based diet decreased body weight, percent body fat, and plasma triacylglycerols in rats and suppressed intestinal colonization by pathogens.


Subject(s)
Gastrointestinal Microbiome , Lens Plant/metabolism , Obesity/drug therapy , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biomarkers/analysis , Energy Intake , Feces/microbiology , Humans , Lens Plant/chemistry , Male , Obesity/metabolism , Obesity/microbiology , Rats , Rats, Sprague-Dawley , Seeds/chemistry , Seeds/metabolism , Triglycerides/metabolism
3.
3 Biotech ; 7(5): 289, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28868216

ABSTRACT

This study aimed to assess genetic variability at molecular and phytochemical levels among the four most commonly grown olive cultivars and the wild-type olive of Saudi Arabia. Sixty-six and 80 amplicons were generated from 9 random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) primers, each, producing an average of 95.9 and 86.44% polymorphism for the two markers, respectively. The PIC values were 82.2% for the RAPD and 85.4% for the ISSR markers and the discrimination power for both the markers was 11.1%. The UPGMA cluster analysis based on the RAPD and ISSR data resulted in the aggregation of cultivars and wild accession with a good bootstrapping value according to their origin. Furthermore, a total of 199 compounds were identified in the cultivars based on peak area, retention time, and molecular formula using GC-MS analyses of methanolic and ethanolic extracts. These compounds were classified according to their chemical class; most of them were fatty acids, alcoholic compounds, carboxylic acids, aldehydes, heterocyclic compounds, ketones, alkanes, and phenols. Genetic and phytochemical distances were significantly correlated, based on the Mantel test. The Saudi wild accession also had high numbers of fatty acids and their esters, and can be used in breeding programs for generating new genotypes with interesting characters.

SELECTION OF CITATIONS
SEARCH DETAIL
...