Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38659640

ABSTRACT

Noninvasive transcranial photoacoustic computed tomography (PACT) of the human brain, despite its clinical potential, remains impeded by the acoustic distortion induced by the human skull. The distortion, which is attributed to the markedly different material properties of the skull relative to soft tissue, results in heavily aberrated PACT images -- a problem that has remained unsolved in the past two decades. Herein, we report the first successful experimental demonstration of the de-aberration of PACT images through an ex-vivo adult human skull using a homogeneous elastic model for the skull. Using only the geometry, position, and orientation of the skull, we accurately de-aberrate the PACT images of light-absorbing phantoms acquired through an ex-vivo human skull, in terms of the recovered phantom features, for different levels of phantom complexity and positions. Our work addresses the longstanding challenge of skull-induced aberrations in transcranial PACT and advances the field towards unlocking the full potential of transcranial human brain PACT.

2.
ArXiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37426449

ABSTRACT

Photoacoustic computed tomography (PACT) is emerging as a new technique for functional brain imaging, primarily due to its capabilities in label-free hemodynamic imaging. Despite its potential, the transcranial application of PACT has encountered hurdles, such as acoustic attenuations and distortions by the skull and limited light penetration through the skull. To overcome these challenges, we have engineered a PACT system that features a densely packed hemispherical ultrasonic transducer array with 3072 channels, operating at a central frequency of 1 MHz. This system allows for single-shot 3D imaging at a rate equal to the laser repetition rate, such as 20 Hz. We have achieved a single-shot light penetration depth of approximately 9 cm in chicken breast tissue utilizing a 750 nm laser (withstanding 3295-fold light attenuation and still retaining an SNR of 74) and successfully performed transcranial imaging through an ex vivo human skull using a 1064 nm laser. Moreover, we have proven the capacity of our system to perform single-shot 3D PACT imaging in both tissue phantoms and human subjects. These results suggest that our PACT system is poised to unlock potential for real-time, in vivo transcranial functional imaging in humans.

3.
Opt Lett ; 46(20): 5236-5239, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34653161

ABSTRACT

Designing optical fields with predetermined properties in source-free inhomogeneous media has been a long-sought goal due to its potential utilization in many applications, such as optical trapping, micromachining, imaging, and data communications. Using ideas from the calculus of variations, we provide a general framework based on the Helmholtz equation to design optical fields with prechosen amplitude and phase inside an inhomogeneous medium. The generated field is guaranteed to be the closest physically possible rendition of the desired field. The developed analytical approach is then verified via different techniques, where the approach's validity is demonstrated by generating the desired optical fields in different inhomogeneous media.

4.
Opt Express ; 28(17): 24721-24730, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907006

ABSTRACT

The ability to generate any arbitrarily chosen optical field in a three-dimensional (3D) space, in the absence of any sources, without modifying the index of refraction, remains an elusive but much-desired capability with applications in various fields such as optical micromanipulation, imaging, and data communications, to name a few. In this work, we show analytically that it is possible to generate any desired scalar optical field with predefined amplitude and phase in 3D space, where the generated field is an exact duplicate of the desired field in case it is a solution of Helmholtz wave equation, or if the existence of such field is strictly forbidden, the generated field is the closest possible rendition of the desired field in amplitude and phase. The developed analytical approach is further supported via experimental demonstration of optical beams with exotic trajectories and can have a significant impact on the aforementioned application areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...