Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 16(6): 741-51, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15960605

ABSTRACT

Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose-response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 10(2), and maximum expression at 10(6), transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS.


Subject(s)
Brain/physiology , Gene Expression , Genetic Vectors/immunology , Lentivirus/genetics , Transgenes , Animals , Brain/immunology , Central Nervous System/physiology , Dose-Response Relationship, Drug , Gene Transfer Techniques , Genetic Vectors/genetics , Genetic Vectors/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , Immunization , Inflammation/immunology , Rats , Rats, Sprague-Dawley
2.
Cancer Gene Ther ; 10(1): 30-9, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12489026

ABSTRACT

Poor efficiency of gene transfer into cancer cells constitutes the major bottleneck of current cancer gene therapy. We reasoned that because tumors are masses of rapidly dividing cells, they would be most efficiently transduced with vector systems allowing transgene propagation. We thus designed two replicative retrovirus-derived vector systems: one inherently replicative vector, and one defective vector propagated by a helper retrovirus. In vitro, both systems achieved very efficient transgene propagation. In immunocompetent mice, replicative vectors transduced >85% tumor cells, whereas defective vectors transduced <1% under similar conditions. It is noteworthy that viral propagation could be efficiently blocked by azido-thymidine, in vitro and in vivo. In a model of established brain tumors treated with suicide genes, replicative retroviral vectors (RRVs) were approximately 1000 times more efficient than defective adenoviral vectors. These results demonstrate the advantage and potential of RRVs and strongly support their development for cancer gene therapy.


Subject(s)
Adenoviridae/genetics , Genetic Therapy/methods , Genetic Vectors , Moloney murine leukemia virus/genetics , Neoplasms/therapy , 3T3 Cells , Animals , Gene Transfer Techniques , Green Fluorescent Proteins , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/genetics , Neoplasms/virology , Rats , Rats, Inbred Lew , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...