Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38826411

ABSTRACT

Rationale: Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, and progressive decline in lung function. Autopsy and spirometry data suggest that cystic fibrosis may start in the small airways which, due to the fractal nature of the airways, account for most of the airway tree surface area. However, they are not easily accessible for testing. Objectives: Here, we tested the hypothesis that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Methods: Current mucociliary clearance assays are limited therefore we developed a dynamic positron emission tomography scan assay with high spatial and temporal resolution. Each study was accompanied by a high-resolution computed tomography scan that helped identify the thin outer region of the lung that contained small airways. Measurements and Main Results: Clearance of aerosolized [ 68 Ga]macro aggregated albumin from distal airways occurred within minutes after delivery and followed a two-phase process. In cystic fibrosis pigs, both early and late clearance rates were slower. Stimulation of the cystic fibrosis airways with the purinergic agonist UTP further impaired late clearance. Only 1 cystic fibrosis pig treated with UTP out of 6 cleared more than 20% of the delivered dose. Conclusions: These data indicate that mucociliary transport in the small airways is fast and can easily be missed if the acquisition is not fast enough. The data also indicate that mucociliary transport is impaired in small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.

2.
Open Forum Infect Dis ; 11(2): ofae024, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390464

ABSTRACT

Background: People with cystic fibrosis (CF) are at increased risk for bronchiectasis, and several reports suggest that CF carriers may also be at higher risk for developing bronchiectasis. The purpose of this study was to determine if CF carriers are at risk for more severe courses or complications of bronchiectasis. Methods: Using MarketScan data (2001-2021), we built a cohort consisting of 105 CF carriers with bronchiectasis and 300 083 controls with bronchiectasis but without a CF carrier diagnosis. We evaluated if CF carriers were more likely to be hospitalized for bronchiectasis. In addition, we examined if CF carriers were more likely to be infected with Pseudomonas aeruginosa or nontuberculous mycobacteria (NTM) or to have filled more antibiotic prescriptions. We considered regression models for incident and rate outcomes that controlled for age, sex, smoking status, and comorbidities. Results: The odds of hospitalization were almost 2.4 times higher (95% CI, 1.116-5.255) for CF carriers with bronchiectasis when compared with non-CF carriers with bronchiectasis. The estimated odds of being diagnosed with a Pseudomonas infection for CF carriers vs noncarriers was about 4.2 times higher (95% CI, 2.417-7.551) and 5.4 times higher (95% CI, 3.398-8.804) for being diagnosed with NTM. The rate of distinct antibiotic fill dates was estimated to be 2 times higher for carriers as compared with controls (95% CI, 1.735-2.333), and the rate ratio for the total number of days of antibiotics supplied was estimated as 2.8 (95% CI, 2.290-3.442). Conclusions: CF carriers with bronchiectasis required more hospitalizations and more frequent administration of antibiotics as compared with noncarriers. Given that CF carriers were also more likely to be diagnosed with Pseudomonas and NTM infections, CF carriers with bronchiectasis may have a phenotype more resembling CF-related bronchiectasis than non-CF bronchiectasis.

4.
Physiol Rep ; 10(17): e15340, 2022 09.
Article in English | MEDLINE | ID: mdl-36073059

ABSTRACT

In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl-  and HCO3 -  secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.


Subject(s)
Cystic Fibrosis , Animals , Bicarbonates , Cystic Fibrosis/drug therapy , Mucociliary Clearance , Respiratory Mucosa , Swine , Tromethamine
5.
Proc Natl Acad Sci U S A ; 119(13): e2121731119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35324331

ABSTRACT

SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.


Subject(s)
Cystic Fibrosis , Mucociliary Clearance , Animals , Disulfides , Mucus , Respiratory Mucosa , Swine
6.
Am J Respir Crit Care Med ; 204(6): 692-702, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34170795

ABSTRACT

Rationale: Although it is clear that cystic fibrosis (CF) airway disease begins at a very young age, the early and subsequent steps in disease pathogenesis and the relative contribution of infection, mucus, and inflammation are not well understood. Objectives: As one approach to assessing the early contribution of infection, we tested the hypothesis that early and continuous antibiotics would decrease the airway bacterial burden. We believed that, if they do, this might reveal aspects of the disease that are more or less sensitive to decreasing infection. Methods: Three groups of pigs were studied from birth until ∼3 weeks of age: 1) wild-type, 2) CF, and 3) CF pigs treated continuously with broad-spectrum antibiotics from birth until study completion. Disease was assessed with chest computed tomography, histopathology, microbiology, and BAL. Measurements and Main Results: Disease was present by 3 weeks of age in CF pigs. Continuous antibiotics from birth improved chest computed tomography imaging abnormalities and airway mucus accumulation but not airway inflammation in the CF pig model. However, reducing bacterial infection did not improve two disease features already present at birth in CF pigs: air trapping and submucosal gland duct plugging. In the CF sinuses, antibiotics did not prevent the development of infection or disease or the number of bacteria but did alter the bacterial species. Conclusions: These findings suggest that CF airway disease begins immediately after birth and that early and continuous antibiotics impact some, but not all, aspects of CF lung disease development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lung/drug effects , Respiratory Mucosa/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Bacteria/isolation & purification , Bronchoalveolar Lavage Fluid/microbiology , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/pathology , Lung/diagnostic imaging , Lung/microbiology , Lung/pathology , Multidetector Computed Tomography , Respiratory Mucosa/microbiology , Respiratory Mucosa/pathology , Swine
7.
Elife ; 92020 10 07.
Article in English | MEDLINE | ID: mdl-33026343

ABSTRACT

Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.


Subject(s)
Ectodysplasins/genetics , Exocrine Glands/immunology , Respiratory Mucosa/immunology , Staphylococcus aureus/physiology , Sus scrofa/immunology , Animals , Ectodysplasins/immunology , Female , Gene Knockout Techniques , Male , Sus scrofa/genetics
8.
Gene Ther ; 26(6): 240-249, 2019 06.
Article in English | MEDLINE | ID: mdl-30962536

ABSTRACT

Adeno-associated virus (AAV) has been investigated to transfer the cystic fibrosis transmembrane conductance regulator (CFTR) to airways. Inhaled AAV2-CFTR in people with cystic fibrosis (CF) is safe, but inefficient. In vitro, AAV2 transduction of human airway epithelia on the apical (luminal) side is inefficient, but efficient basolaterally. We previously selected AAV2.5T, a novel capsid that apically transduces CF human airway epithelia and efficiently restores CFTR function. We hypothesize the AAV receptor (AAVR) is basolaterally localized, and that AAV2.5T utilizes an alternative apical receptor. We found AAVR in human airway epithelia by western blot and RNA-Seq analyses. Using immunocytochemistry we did not find endogenous AAVR at membranes but overexpression localized AAVR to the basolateral membrane, where it preferentially increased transduction. Anti-AAVR antibodies blocked transduction by AAV2 from the basolateral side but not AAV2.5T from the apical side, suggesting a unique apical receptor. Finally, we found infection by AAV2 but not AAV2.5T was blocked by CRISPR knockout of AAVR in cell lines. Our data suggest the absence of apical AAVR is rate limiting for AAV2, and efficient transduction by AAV2.5T is accomplished using an AAVR independent pathway. Our findings inform the development of gene therapy for CF, and AAV vectors in general.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Receptors, Cell Surface/genetics , Transfection/methods , Cell Line , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Receptors, Cell Surface/metabolism , Respiratory Mucosa/metabolism
9.
Ann Am Thorac Soc ; 15(Suppl 3): S171-S176, 2018 11.
Article in English | MEDLINE | ID: mdl-30431346

ABSTRACT

Cystic fibrosis (CF) lung disease is the major cause of morbidity and mortality in people with CF. Abnormal mucociliary transport has been the leading hypothesis for the underlying pathogenesis of CF airway disease. However, this has been difficult to investigate at very early time points. A porcine CF model, which recapitulates many features of CF disease in humans, enables studies to be performed in non-CF and CF pigs on the day that they are born. In newborn CF pigs, we found that under basal conditions, mucociliary transport rates in non-CF and CF pigs are similar. However, after cholinergic stimulation, which stimulates submucosal gland secretion, particles become stuck in the CF airways owing to a failure of mucus strands to release from submucosal glands. In this review, we summarize these recent discoveries and also discuss the morphology, composition, and function of mucins in the porcine lung.


Subject(s)
Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Mucociliary Clearance/physiology , Respiratory Mucosa/physiology , Animals , Animals, Newborn , Cystic Fibrosis/etiology , Disease Models, Animal , Mucus/metabolism , Swine
10.
JCI Insight ; 3(15)2018 08 09.
Article in English | MEDLINE | ID: mdl-30089726

ABSTRACT

BACKGROUND: Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF), and lung disease produces most of the mortality. Loss of CFTR-mediated HCO3- secretion reduces the pH of airway surface liquid (ASL) in vitro and in neonatal humans and pigs in vivo. However, we previously found that, in older children and adults, ASL pH does not differ between CF and non-CF. Here, we tested whether the pH of CF ASL increases with time after birth. Finding that it did suggested that adaptations by CF airways increase ASL pH. This conjecture predicted that increasing CFTR activity in CF airways would further increase ASL pH and also that increasing CFTR activity would correlate with increases in ASL pH. METHODS: To test for longitudinal changes, we measured ASL pH in newborns and then at 3-month intervals. We also studied people with CF (bearing G551D or R117H mutations), in whom we could acutely stimulate CFTR activity with ivacaftor. To gauge changes in CFTR activity, we measured changes in sweat Cl- concentration immediately before and 48 hours after starting ivacaftor. RESULTS: Compared with that in the newborn period, ASL pH increased by 6 months of age. In people with CF bearing G551D or R117H mutations, ivacaftor did not change the average ASL pH; however reductions in sweat Cl- concentration correlated with elevations of ASL pH. Reductions in sweat Cl- concentration also correlated with improvements in pulmonary function. CONCLUSIONS: Our results suggest that CFTR-independent mechanisms increase ASL pH in people with CF. We speculate that CF airway disease, which begins soon after birth, is responsible for the adaptation. FUNDING: Vertex Inc., the NIH (P30DK089507, 1K08HL135433, HL091842, HL136813, K24HL102246), the Cystic Fibrosis Foundation (SINGH17A0 and SINGH15R0), and the Burroughs Wellcome Fund.


Subject(s)
Aminophenols/pharmacology , Bicarbonates/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/pathology , Quinolones/pharmacology , Adult , Aminophenols/therapeutic use , Animals , Biological Transport, Active/drug effects , Biological Transport, Active/genetics , Chlorides/analysis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Female , Humans , Hydrogen-Ion Concentration , Infant , Infant, Newborn , Ion Transport/drug effects , Ion Transport/genetics , Longitudinal Studies , Lung/metabolism , Male , Middle Aged , Mutation , Quinolones/therapeutic use , Respiratory Mucosa/metabolism , Sweat/chemistry , Sweat/drug effects , Young Adult
11.
Lung ; 196(2): 219-229, 2018 04.
Article in English | MEDLINE | ID: mdl-29380034

ABSTRACT

Airway hyperreactivity is a hallmark feature of asthma and can be precipitated by airway insults, such as ozone exposure or viral infection. A proposed mechanism linking airway insults to airway hyperreactivity is augmented cholinergic transmission. In the current study, we tested the hypothesis that acute potentiation of cholinergic transmission is sufficient to induce airway hyperreactivity. We atomized the cholinergic agonist bethanechol to neonatal piglets and forty-eight hours later measured airway resistance. Bethanechol-treated piglets displayed increased airway resistance in response to intravenous methacholine compared to saline-treated controls. In the absence of an airway insult, we expected to find no evidence of airway inflammation; however, transcripts for several asthma-associated cytokines, including IL17A, IL1A, and IL8, were elevated in the tracheas of bethanechol-treated piglets. In the lungs, prior bethanechol treatment increased transcripts for IFNγ and its downstream target CXCL10. These findings suggest that augmented cholinergic transmission is sufficient to induce airway hyperreactivity, and raise the possibility that cholinergic-mediated regulation of pro-inflammatory pathways might contribute.


Subject(s)
Airway Resistance/drug effects , Bethanechol/toxicity , Bronchial Hyperreactivity/chemically induced , Bronchoconstriction/drug effects , Cytokines/metabolism , Lung/drug effects , Muscarinic Agonists/toxicity , Transcriptional Activation/drug effects , Administration, Inhalation , Animals , Animals, Newborn , Bethanechol/administration & dosage , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Cytokines/genetics , Inflammation Mediators/metabolism , Lung/metabolism , Lung/physiopathology , Muscarinic Agonists/administration & dosage , Sus scrofa , Up-Regulation
12.
Proc Natl Acad Sci U S A ; 115(6): 1370-1375, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29358407

ABSTRACT

Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gαi and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses.


Subject(s)
Bronchi/cytology , Epithelial Cells/metabolism , Hedgehog Proteins/metabolism , Trachea/cytology , Cells, Cultured , Cilia/metabolism , Cilia/physiology , Cyclic AMP/metabolism , Epithelial Cells/cytology , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
13.
Environ Health Perspect ; 125(7): 077003, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28696208

ABSTRACT

BACKGROUND: Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), which contains antimicrobial proteins and peptides (AMPs). Cationic AMPs bind negatively charged bacteria to exert their antimicrobial activity. PM arriving in the airways could potentially interact with AMPs in the ASL to affect their antimicrobial activity. OBJECTIVES: We hypothesized that PM can interact with ASL AMPs to impair their antimicrobial activity. METHODS: We exposed pig and human airway explants, pig and human ASL, and the human cationic AMPs ß-defensin-3, LL-37, and lysozyme to CFA or control. Thereafter, we assessed the antimicrobial activity of exposed airway samples using both bioluminescence and standard colony-forming unit assays. We investigated PM-AMP electrostatic interaction by attenuated total reflection Fourier-transform infrared spectroscopy and measuring the zeta potential. We also studied the adsorption of AMPs on PM. RESULTS: We found increased bacterial survival in CFA-exposed airway explants, ASL, and AMPs. In addition, we report that PM with a negative surface charge can adsorb cationic AMPs and form negative particle-protein complexes. CONCLUSION: We propose that when CFA arrives at the airway, it rapidly adsorbs AMPs and creates negative complexes, thereby decreasing the functional amount of AMPs capable of killing pathogens. These results provide a novel translational insight into an early mechanism for how ambient PM increases the susceptibility of the airways to bacterial infection. https://doi.org/10.1289/EHP876.


Subject(s)
Air Pollutants/toxicity , Antimicrobial Cationic Peptides/genetics , Coal Ash/toxicity , Particulate Matter/toxicity , Respiratory Mucosa/drug effects , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Humans , Respiratory System/drug effects , Sus scrofa
14.
Proc Natl Acad Sci U S A ; 114(26): 6842-6847, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28607090

ABSTRACT

Gel-forming mucins, the primary macromolecular components of airway mucus, facilitate airway clearance by mucociliary transport. In cystic fibrosis (CF) altered mucus properties impair mucociliary transport. Airways primarily secrete two closely related gel-forming mucins, MUC5B and MUC5AC. However, their morphologic structures and associations in airways that contain abundant submucosal glands and goblet cells are uncertain. Moreover, there is limited knowledge about mucins in airways not affected by inflammation, infection, or remodeling or in CF airways. Therefore, we examined airways freshly excised from newborn non-CF pigs and CF pigs before secondary manifestations develop. We found that porcine submucosal glands produce MUC5B, whereas goblet cells produce predominantly MUC5AC plus some MUC5B. We found that MUC5B emerged from submucosal gland ducts in the form of strands composed of multiple MUC5B filaments. In contrast, MUC5AC emerged from goblet cells as wispy threads and sometimes formed mucin sheets. In addition, MUC5AC often partially coated the MUC5B strands. Compared with non-CF, MUC5B more often filled CF submucosal gland ducts. MUC5AC sheets also accumulated in CF airways overlying MUC5B strands. These results reveal distinct morphology and interactions for MUC5B and MUC5AC and suggest that the two mucins make distinct contributions to mucociliary transport. Thus, they provide a framework for understanding abnormalities in disease.


Subject(s)
Airway Remodeling , Cystic Fibrosis/metabolism , Goblet Cells/metabolism , Mucin 5AC/metabolism , Mucin-5B/metabolism , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Goblet Cells/pathology , Mice , Mice, Knockout , Mucin 5AC/genetics , Mucin-5B/genetics
15.
J Appl Physiol (1985) ; 123(3): 526-533, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28620056

ABSTRACT

Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis.NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis.


Subject(s)
Bronchi/diagnostic imaging , Bronchi/growth & development , Cystic Fibrosis/diagnostic imaging , Trachea/drug effects , Trachea/growth & development , Animals , Animals, Genetically Modified , Animals, Newborn , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Lung/diagnostic imaging , Lung/growth & development , Swine
16.
J Cyst Fibros ; 16(4): 471-474, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28377087

ABSTRACT

BACKGROUND: We sought to address whether CF macrophages have a primary functional defect as a consequence of CFTR loss and thus contribute to the onset of infection and inflammation observed in CF lung disease. METHODS: Monocyte derived macrophages (MDMs) were prepared from newborn CF and non-CF pigs. CFTR mRNA expression was quantified by rtPCR and anion channel function was determined using whole cell patch clamp analysis. IL8 and TNFα release from MDMs in response to lipopolysaccharide stimulation was measured by ELISA. RESULTS: CFTR was expressed in MDMs by Q-rtPCR at a lower level than in epithelial cells. MDMs exhibited functional CFTR current at the cell membrane and this current was absent in CF MDMs. CF MDMs demonstrated an exaggerated response to lipopolysaccharide stimulation. CONCLUSIONS: In the absence of CFTR function, macrophages from newborn CF pigs exhibit an increased inflammatory response to a lipopolysaccharide challenge. This may contribute to the onset and progression of CF lung disease.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Inflammation/immunology , Macrophages/immunology , Animals , Animals, Newborn , Cystic Fibrosis/genetics , Cystic Fibrosis/immunology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Immunization/methods , Interleukin-8/analysis , Lipopolysaccharides/immunology , Patch-Clamp Techniques/methods , Swine , Tumor Necrosis Factor-alpha/analysis
17.
Clin Case Rep ; 5(2): 93-96, 2017 02.
Article in English | MEDLINE | ID: mdl-28174630

ABSTRACT

Mounier-Kuhn syndrome is a rare clinical disorder characterized by tracheobronchial dilation and recurrent lower respiratory tract infections. While the etiology of the disease remains unknown, histopathological analysis of Mounier-Kuhn airways demonstrates that the disease is, in part, characterized by cellular changes in airway smooth muscle.

18.
JCI Insight ; 1(14): e88728, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27699238

ABSTRACT

The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl- transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Cystic Fibrosis/therapy , Genetic Vectors , Animals , Dependovirus , Phenotype , Swine
19.
JCI Insight ; 1(14)2016 09 08.
Article in English | MEDLINE | ID: mdl-27656681

ABSTRACT

Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector-delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus-based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector-treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Cystic Fibrosis/therapy , Genetic Therapy , Genetic Vectors , Animals , Ion Transport , Lentivirus , Swine
20.
JCI Insight ; 1(8)2016 06 02.
Article in English | MEDLINE | ID: mdl-27390778

ABSTRACT

In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3- and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3- increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3--independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...