Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 30, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36593257

ABSTRACT

Because of its low critical temperature and pressure levels, supercritical carbon dioxide (scCO2) is the most widely used supercritical fluid in the supercritical fluid extraction (SFE) technique. Alizarin was extracted from madder roots (Rubia tinctorum) using scCO2 under different conditions of co-solvent ratio (0-50%), temperature (45-95 °C), pressure (150-250 bar), extraction time (15-120 min), and flow rate (5-9 mL/min). Based on alizarin recovery and minimization of environmental risk, the optimum conditions were determined. SFE was optimum at 90% CO2:10% methanol (Me), 65 °C, 250 bar, 45 min, and 9 mL/min. The alizarin recovery, and its content in R. tinctorum extract (RE) under the optimum conditions were 1.34 g/kg roots, and 6.42%, respectively. Using conventional dyeing methods, wool fabrics were dyed with RE at different concentrations (2-6%). Various types of mordants were also used in the dyeing process, including chemical and bio-mordants. Color and fastness properties of dyed wool fabrics were evaluated based on RE concentration and mordant type. A higher RE concentration and the use of mordants, specifically Punica granatum (P. granatum) peels, increased the color characteristics. RE and dyed fabrics exhibited good antibacterial activity against the tested bacterial strains, especially Pseudomonas aeruginosa and Escherichia coli.


Subject(s)
Rubia , Wool , Animals , Coloring Agents/chemistry , Carbon Dioxide , Rubia/chemistry
2.
Polymers (Basel) ; 14(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36297850

ABSTRACT

Nowadays, consumers understand that upgrading their traditional clothing can improve their lives. In a garment fabric, comfort and functional properties are the most important features that a wearer looks for. A variety of textile technologies are being developed to meet the needs of customers. In recent years, nanotechnology has become one of the most important areas of research. Nanotechnology's unique and useful characteristics have led to its rapid expansion in the textile industry. In the production of high-performance textiles, various finishing, coating, and manufacturing techniques are used to produce fibers or fabrics with nano sized (10-9) particles. Humans have been utilizing cotton for thousands of years, and it accounts for around 34% of all fiber production worldwide. The clothing industry, home textile industry, and healthcare industry all use it extensively. Nanotechnology can enhance cotton fabrics' properties, including antibacterial activity, self-cleaning, UV protection, etc. Research in the field of the functionalization of nanotechnology and their integration into cotton fabrics is presented in the present study.

3.
Sci Rep ; 12(1): 8789, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610356

ABSTRACT

Polypropylene fibres are difficult to dye using commonly used techniques due to the high crystallinity and non-polar aliphatic structure, that lack reactive places for dyes in the molecule. Dyeing PP fabric in scCO2 with antibacterial dyes merged the dyeing and finishing methods, resulting in a more productive technique in terms of water and energy consumption. Unmodified polypropylene fabric was dyed with 4-[2-[4-(ethenylsulphonyl)phenyl]diazenyl]-N,N-diethylbenzenamine antibacterial dye under scCO2 medium. The influences of scCO2 working parameters, such as dye concentration, pressure, dyeing time, and temperature, on fabric dye absorption expressed as color strength were studied. The color strength (K/S) was measured as well as CIELAB color parameters. The results were compared with its water dyeing analogue and it was observed that color strength as well as color depth (L) of the samples dyed in scCO2 were noticeably better than its water counterpart. In both scCO2 and water, the fastness properties (washing, rubbing, and light) of the dyed samples were excellent. Antibacterial activity of the dyed polypropylene sample in scCO2 was estimated and the results indicated good antibacterial efficiency.


Subject(s)
Coloring Agents , Polypropylenes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbon Dioxide , Coloring Agents/chemistry , Sulfones , Water
4.
Polymers (Basel) ; 14(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35267779

ABSTRACT

The COVID-19 pandemic has clearly shown the importance of developing advanced protective equipment, and new antiviral fabrics for the protection and prevention of life-threatening viral diseases are needed. In this study, selenium nanoparticles (SeNPs) were combined with polyester fabrics using printing technique to obtain multifunctional properties, including combined antiviral and antibacterial activities as well as coloring. The properties of the printed polyester fabrics with SeNPs were estimated, including tensile strength and color fastness. Characterization of the SeNPs was carried out using TEM and SEM. The results of the analysis showed good uniformity and stability of the particles with sizes range from 40-60 nm and 40-80 nm for SeNPs 25 mM and 50 mM, respectively, as well as uniform coating of the SeNPs on the fabric. In addition, the SeNPs-printed polyester fabric exhibited high disinfection activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an inhibition percentage of 87.5%. Moreover, a toxicity test of the resulting printed fabric revealed low cytotoxicity against the HFB4 cell line. In contrast, the treated fabric under study showed excellent killing potentiality against Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli). This multifunctional fabric has high potential for use in protective clothing applications by providing passive and active protection pathways.

5.
Polymers (Basel) ; 13(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502928

ABSTRACT

This study aims to develop multifunctional pile cotton fabrics by implementing different compositions of lycra yarns with different densities of the cotton fabric under study. Highly dispersed silica nanoparticles (SiO2 NPs) with small sizes-in the range of 10-40 nm-were successfully prepared and were analyzed using scanning electron microscopy (SEM). The particle size distribution of nano silica was determined via dynamic laser scattering (DLS) and measurements of its zeta potential. Cotton/lycra fabrics were treated using prepared SiO2 NPs in presence of ethylenediaminetetraacetic acid (EDTA) as a crosslinking agent. Energy dispersive X-ray (EDX) analysis and scanning electron microscopy (SEM) were used to characterize the nano-treated fabrics and assure homogeneous dispersion of SiO2 NPs on the cotton/lycra composites. Additionally, the nanoparticles were screened for their in vitro antibacterial activity against human pathogens such as Gram-positive Staphylococcus aureus and Bacillus cereus and Gram-negative Escherichia coli and Pseudomonas aeruginosa strains. The functional properties of the new composite pile cotton fabrics include excellent antibacterial, highly self-cleaning, and excellent UV protection factor (UPF) properties.

6.
Polymers (Basel) ; 14(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35012097

ABSTRACT

The development of antibacterial coatings for footwear components is of great interest both from an industry and consumer point of view. In this work, the leather material was developed taking advantage of the intrinsic antibacterial activity and coloring ability of selenium nanoparticles (SeNPs). The SeNPs were synthesized and implemented into the leather surface by using ultrasonic techniques to obtain simultaneous coloring and functionalization. The formation of SeNPs in the solutions was evaluated using UV/Vis spectroscopy and the morphology of the NPs was determined by transmission electron microscopy (TEM). The treated leather material (leather/SeNPs) was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The effects of SeNPs on the coloration and antibacterial properties of the leather material were evaluated. The results revealed that the NPs were mostly spherical in shape, regularly distributed, and closely anchored to the leather surface. The particle size distribution of SeNPs at concentrations of 25 mM and 50 mM was in the range of 36-77 nm and 41-149 nm, respectively. It was observed that leather/SeNPs exhibited a higher depth of shade compared to untreated ones, as well as excellent fastness properties. The results showed that leather/SeNPs can significantly enhance the antibacterial activity against model of bacteria, including Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi and Escherichia coli). Moreover, the resulting leather exhibited low cytotoxicity against HFB4 cell lines. This achievement should be quite appealing to the footwear industry as a way to prevent the spread of bacterial infection promoted by humidity, poor breathability and temperature which promote the expansion of the microflora of the skin.

SELECTION OF CITATIONS
SEARCH DETAIL
...