Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Acta Trop ; 248: 107041, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37858877

ABSTRACT

Exosomes were isolated from T. gondii infected human hepatoblastoma cells using the exosome isolation kit and characterized by electron microscopy and Western blotting. Exosomes adsorbed to alum adjuvant were evaluated as a potential immunizing agent against murine chronic toxoplasmosis compared to excretory secretory antigens (ESA)-alum. Mice were immunized at days 1, 15 and 29. The levels of IgG, IFN-γ, IL-4 and IL-10, CD4+ and CD8+ T cells were determined using sandwich enzyme-linked immunosorbent assay (sandwich ELISA) at days 14, 28 and 56 of the experiment. Then mice were infected orally with 10 cysts of T. gondii. The protective efficacy of the antigens were evaluated by counting the brain cysts and measuring the aforementioned humoral and cellular parameters 60 days post infection. The results showed that alum increased the protective efficacy of the exosomes. Immunization with exosome-alum induced both humoral and mixed Th1/Th2 cellular immune responses. Exosome-alum gave higher levels of the humoral and cellular parameters, compared to ESA-alum. After challenge infection, exosome-alum significantly reduced the brain cyst burden by 75 % while ESA-alum gave 42 % reduction and evoked higher humoral and cellular immune responses. Therefore, the possibility of using T. gondii infected cells-derived exosome-alum as a vaccine is a new perspective in toxoplasmosis.


Subject(s)
Exosomes , Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Animals , Mice , Humans , CD8-Positive T-Lymphocytes , Toxoplasmosis/prevention & control , Antibodies, Protozoan , Protozoan Proteins , Antigens, Protozoan
2.
Acta Trop ; 238: 106784, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36502886

ABSTRACT

Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.


Subject(s)
Toxocara canis , Toxocariasis , Animals , Immune Evasion , Toxocara , Immunity, Innate , Larva , Immunotherapy , Antigens, Helminth
3.
Acta Trop ; 232: 106467, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427535

ABSTRACT

The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.


Subject(s)
Extracellular Vesicles , MicroRNAs , Schistosoma japonicum , Animals , Extracellular Vesicles/metabolism , Host-Parasite Interactions , MicroRNAs/genetics , Proteomics , Schistosoma japonicum/genetics
4.
Biomédica (Bogotá) ; 42(1): 67-84, ene.-mar. 2022. tab, graf
Article in English | LILACS | ID: biblio-1374508

ABSTRACT

Introduction: Praziquantel (PZQ) is the only commercially available drug for schistosomiasis. The current shortage of alternative effective drugs and the lack of successful preventive measures enhance its value. The increase in the prevalence of PZQ resistance under sustained drug pressure is, therefore, an upcoming issue. Objective: To overcome the tolerance to PZQ using nanotechnology after laboratory induction of a Schistosoma mansoni isolate with reduced sensitivity to the drug during the intramolluscan phase. Materials and methods: Shedding snails were treated with PZQ doses of 200 mg/kg twice/ week followed by an interval of one week and then repeated twice in the same manner. The success of inducing reduced sensitivity was confirmed in vitro via the reduction of cercarial response to PZQ regarding their swimming activity and death percentage at different examination times. Results: Oral treatment with a single PZQ dose of 500 mg/kg in mice infected with cercariae with reduced sensitivity to PZQ revealed a non-significant reduction (35.1%) of total worm burden compared to non-treated control mice. Orally inoculated PZQ- encapsulated niosomes against S. mansoni with reduced sensitivity to PZQ successfully regained the pathogen's sensitivity to PZQ as evidenced by measuring different parameters in comparison to the non-treated infected animals with parasites with reduced sensitivity to PZQ. The mean total worm load was 1.33 ± 0.52 with a statistically significant reduction of 94.09% and complete eradication of male worms. We obtained a remarkable increase in the percentage reduction of tissue egg counts in the liver and intestine (97.68% and 98.56%, respectively) associated with a massive increase in dead eggs and the complete absence of immature stages. Conclusion: PZQ-encapsulated niosomes restored the drug sensitivity against laboratory- induced S. mansoni adult worms with reduced sensitivity to PZQ.


Introducción. El prazicuantel es el único fármaco disponible comercialmente para la esquistosomiasis. La escasez actual de medicamentos alternativos y la falta de medidas preventivas eficaces aumentan su valor. La creciente prevalencia de la resistencia al prazicuantel bajo una presión prolongada del fármaco es, por tanto, un tema emergente. Objetivos. Superar la tolerancia al prazicuantel mediante nanotecnología después de la inducción en laboratorio de un aislamiento de Schistosoma mansoni con sensibilidad reducida al fármaco durante la fase intramolusco. Materiales y métodos. Los caracoles que liberaban cercarias se trataron con prazicuantel en dosis de 200 mg/kg dos veces por semana, seguidas de un intervalo de una semana, y luego se repitieron dos veces de la misma manera. La inducción exitosa de la sensibilidad reducida se confirmó in vitro mediante la reducción de la reacción de las cercarias al prazicuantel con respecto a su actividad de natación y el porcentaje de muerte en diferentes momentos de examen. El éxito en inducir una menor sensibilidad se confirmó in vitro mediante la reducción de la reacción de las cercarias al prazicuantel. Resultados. El tratamiento oral con una dosis única de prazicuantel de 500 mg/kg en ratones infectados con cercarias con sensibilidad reducida al prazicuantel, reveló una reducción no significativa (35,1 %) de la carga total de gusanos en comparación con los ratones de control no tratados. Los niosomas encapsulados en prazicuantel inoculados por vía oral contra S. mansoni con sensibilidad reducida al prazicuantel, permitieron reestablecer con éxito la sensibilidad del patógeno al medicamento, como lo demostró la medición de diferentes parámetros en comparación con los animales infectados no tratados con parásitos con sensibilidad reducida a prazicuantel. La carga media total de gusanos fue de 1,33 ± 0,52, con una reducción estadísticamente significativa del 94,09 %, y la erradicación completa de los gusanos machos adultos. Se obtuvo un aumento notable en el porcentaje de reducción del recuento de huevos en el tejido del hígado y el intestino (97,68 % y 98,56 %, respectivamente), asociado con un aumento masivo de huevos muertos y ausencia total de estadios inmaduros. Conclusión. Los niosomas encapsulados en prazicuantel restauraron la sensibilidad al fármaco contra gusanos adultos de S. mansoni con sensibilidad reducida al prazicuantel inducida en el laboratorio.


Subject(s)
Praziquantel , Schistosoma mansoni , Drug Resistance , Liposomes
5.
PLoS Negl Trop Dis ; 15(10): e0009866, 2021 10.
Article in English | MEDLINE | ID: mdl-34644290

ABSTRACT

Extracellular vesicles (EVs) are protein-loaded nano-scaled particles that are extracellularly released by eukaryotes and prokaryotes. Parasite's EVs manipulate the immune system, making them probable next-generation vaccines. Schistosomal EVs carry different proteins of promising immunizing potentials. For evaluating the immune-protective role of Schistosoma mansoni (S. mansoni) egg-derived EVs against murine schistosomiasis, EVs were isolated from cultured S. mansoni eggs by progressive sequential cooling ultra-centrifugation technique. Isolated EVs were structurally identified using transmission electron microscope and their protein was quantified by Lowry's technique. Experimental mice were subcutaneously immunized with three doses of 20 µg EVs (with or without alum adjuvant); every two weeks, then were challenged with S. mansoni cercariae two weeks after the last immunizing dose. Six weeks post infection, mice were sacrificed for vaccine candidate assessment. EVs protective efficacy was evaluated through parasitological, histopathological, and immunological parameters. Results showed significant reduction of tegumentally deranged adult worms, hepatic and intestinal egg counts reduction by 46.58%, 93.14% and 93.17% respectively, accompanied by remarkable amelioration of sizes, numbers and histopathology of hepatic granulomata mediated by high interferon gamma (IFN γ) and antibody level. Using sera from vaccinated mice, the molecular weight of EVs' protein components targeted by the antibody produced was recognized by western immunoblot. Results revealed two bands of ~ 14 KDa and ~ 21 KDa, proving that EVs are able to stimulate specific antibodies response. In conclusion, the present study highlighted the role of S. mansoni-egg derived EVs as a potential vaccine candidate against murine schistosomiasis mansoni.


Subject(s)
Extracellular Vesicles/immunology , Ovum/immunology , Schistosoma mansoni/immunology , Vaccines/immunology , Animals , Antibodies, Helminth/immunology , Extracellular Vesicles/genetics , Female , Humans , Immunization , Intestines/immunology , Intestines/parasitology , Male , Mice , Parasite Egg Count , Schistosoma mansoni/genetics , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/prevention & control , Vaccines/administration & dosage
6.
Article in English | MEDLINE | ID: mdl-34119651

ABSTRACT

Schistosoma mansoni worms are under a milieu of external and internal signaling pathways. The life-cycle stages are exposed to enormous stimuli within the mammalian and the snail hosts and as free-living stages in the fresh water. Furthermore, there is a unique interplay between the male and the female worms involving many stimuli from the male essential for full development of the female. PI3K/Akt/mTOR is an evolutionarily divergent signal transduction pathway universal to nearly every multicellular organism. This work reviews the Schistosoma mansoni PI3K/Akt/mTOR signal pathways and the involvement of the signal in the worms' physiology concerning the uptake of glucose, reproduction and survival. The inhibitors of the signal pathway used against Schistosoma mansoni were summarized. Given the importance of the PI3K/Akt/mTOR signal pathway, its inhibition could be a promising control strategy against schistosomiasis.


Subject(s)
Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Schistosoma mansoni/physiology , Schistosomiasis mansoni/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Humans , Schistosomiasis mansoni/parasitology , Signal Transduction
7.
J Bioenerg Biomembr ; 52(5): 397-408, 2020 10.
Article in English | MEDLINE | ID: mdl-32557343

ABSTRACT

Praziquantel leads to increase Ca2+ influx and disrupts Ca2+ homeostasis in adult Schistosoma. However, calcium influx is only one component in a series of molecular events leading to the drug effect and some downstream constituents of the cascade that is initiated by this interaction differ between worms with different degrees of susceptibility to praziquantel. Extensive use of the drug raises the concern regarding the selection of drug resistant parasites. SERCA participates in maintenance of Ca2+ homeostasis. Up-regulation of SERCA has been found in Schistosoma mansoni worms with reduced sensitivity to praziquantel. This could be due to increase cytosolic Ca2+, activation of calmodulin kinase II or may be due to SR/ER stress generated from oxidative stress that leads to impaired protein degradation. The significance of SERCA up-regulation is related to counter action of the drug effect by increasing the worm capacity to restore Ca2+ homeostasis, reducing cytosolic Ca2+ followed by lowering mitochondria Ca2+ and consequently inhibition of apoptosis beside its relation to P-glycoprotein. In schistosomes with reduced sensitivity to praziquantel, the agitations produced by Ca2+ influx and the downstream component of the cascade that is initiated by this interaction may be opposed by up-regulation of SERCA and possibly by certain elements of Ca2+ signaling which modulate the process determining cells entrance in the apoptotic state. Revealing the principal mechanisms of up-regulation of SERCA and its significance in reducing the effect of the drug could lead to possible strategies to reverse drug resistance or develop alternative therapies.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Praziquantel/therapeutic use , Schistosoma mansoni/drug effects , Animals , Praziquantel/pharmacology , Signal Transduction
8.
Parasitology ; 147(6): 634-642, 2020 05.
Article in English | MEDLINE | ID: mdl-32127065

ABSTRACT

Schistosoma mansoni is the most common species causing schistosomiasis. It has a complex life cycle involving a vertebrate definitive host and a snail intermediate host of the genus Biomphalaria. Each stage encounters a plethora of environmental stresses specially heat stress. Another sort of stress arises from repeated exposure of the parasite to praziquantel (PZQ), the only drug used for treatment, which leads to the development of resistance in the fields and the labs. Heat shock protein 70 (Hsp70) is found in different developmental stages of S. mansoni. It is immunogenic and regulate cercarial invasion besides its chaperone function. In the Biomphalaria/S. mansoni interaction, epigenetic modulations of the Hsp70 gene underscore the susceptibility phenotype of the snail. Hsp70 is up-regulated in adult S. mansoni with decreased sensitivity to PZQ. This could be due to the induction of oxidative and endoplasmic reticulum stress, induction of apoptosis, exposure to the stressful drug pressure and increase influx of calcium ions. Up-regulation of Hsp70 might help the worm to survive the schistosomicidal effect of the drug mainly by dealing with misfolded proteins, inhibition of apoptosis, induction of autophagy, up-regulation of the P-glycoprotein transporter and attenuation of the signalling from G protein coupled receptors.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance/genetics , HSP70 Heat-Shock Proteins/genetics , Helminth Proteins/genetics , Praziquantel/pharmacology , Schistosoma mansoni/genetics , Animals , HSP70 Heat-Shock Proteins/metabolism , Helminth Proteins/metabolism , Schistosoma mansoni/drug effects
9.
Comp Immunol Microbiol Infect Dis ; 66: 101341, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31437686

ABSTRACT

The impact of the laboratory induced Schistosoma mansoni with decreased PZQ sensitivity on the biological performance of its different developmental stages and the concomitant structural changes of adult worms' total proteins were investigated. PZQ exposed snails showed stoppage of cercarial shedding for eight weeks followed by progressive significant reduction of cercarial production along four successive weeks. In the vertebrate host, in comparison to Schistosoma mansoni susceptible isolate, inoculated cercariae with decreased PZQ sensitivity led to an evident decrease in male to female ratio associated with significant reduction in tissue egg counts and significant increase in dead egg percentage. Significant reduction in the fecundity was also determined. Interestingly, eggs from adult worms with decreased PZQ sensitivity showed two unique features as they found to be smaller and more spherical in addition to the observation of hourglass shaped miracidium in about 10% of the detected mature eggs. Proteomic analysis of adult worms with decreased sensitivity to PZQ using mass spectrometry revealed up-regulation of Ca2+ ATPase 2 and Hsp70. This study can point to the increase incidence of the neuroschistosomiasis due to the small size eggs of Schistosoma mansoni with reduced PZQ sensitivity. These worms can also impact the epidemiology in the field. The study can also provide help to elucidate underlying potential molecular mechanisms of resistance that could lead to possible strategies to reverse drug resistance.


Subject(s)
Anthelmintics/pharmacology , Biomphalaria/parasitology , Cercaria/drug effects , Praziquantel/pharmacology , Schistosoma mansoni/drug effects , Adenosine Triphosphatases/genetics , Administration, Oral , Animals , Anthelmintics/administration & dosage , Drug Resistance , Female , Fertility , HSP70 Heat-Shock Proteins/genetics , Male , Parasite Egg Count , Praziquantel/administration & dosage , Proteomics
10.
Acta Trop ; 181: 112-121, 2018 May.
Article in English | MEDLINE | ID: mdl-29453950

ABSTRACT

Schistosomiasis is a snail-transmitted infectious disease caused by a long lasting infection with a blood fluke of the genus Schistosoma. S. haematobium and S. mansoni are the species endemic in Egypt. The country has been plagued and seriously suffered from schistosomiasis over the past 5000 years. Great strides had been done in controlling the disease since 1922. The history, epidemiology and the different control approaches were reviewed. Currently, Egypt is preparing towards schistosomiasis elimination by 2020. The new strategy depends on four main axes; large scale treatment in all areas of residual transmission by targeting entire populations with PZQ, intensified snail control, heath education and behavioral changes and expansion of the complementary public health interventions. While on the road towards elimination, we addressed here the important challenges, lessons and the key issues from the different control strategies to help the achievement of our goal. Notably, frangibility of the drug based control, emergence of resistance against PZQ, persistence of some hot spots areas, the need of further control efforts to the high risk individuals and community involvement in the control programs, reconsideration of diagnostic tests used in surveillance, and continous monitoring of the field to detect changes in the snail intermediate host. Importantly, the adaptation between the parasite and its intermediate snail host throughout water bodies in Egypt merits attention as Schistosoma infection can be introduced to the new reclaimed areas. This review may help supplying information for the policy makers to tailor control measures suitable to the local context that could help in the transfer from control to elimination.


Subject(s)
Endemic Diseases/prevention & control , Schistosomiasis/prevention & control , Animals , Disease Vectors , Egypt/epidemiology , Humans , Public Health , Schistosomiasis/epidemiology , Snails/parasitology
11.
Rev. biol. trop ; 64(4): 1747-1757, oct.-dic. 2016. tab, ilus
Article in English | LILACS | ID: biblio-958248

ABSTRACT

Abstract:Schistosomiasis remains a disease of major global public health concern since it is a chronic and debilitating illness. The widely distributed Schistosoma mansoni that causes intestinal schistosomiasis represents a great threat. Its world-wide distribution is permitted by the broad geographic range of the susceptible species of its intermediate host, Biomphalaria, which serves as an obligatory host for the larval stage, at which humans get infected. The objectives were to identify the proteins responsible for the snails' compatibility outcome through differentiation between the total proteins among Biomphalaria alexandrina snails at different ages. The work was conducted on snails that differ in age and genetic backgrounds. Four subgroups (F1) from the progeny of self-reproduced susceptible and resistant snails (F0) were studied. Infection rates of these subgroups (young susceptible, adult susceptible, young resistant and adult resistant) were 90 %, 75 %, 40 % and 0 %, respectively. Using Sodium Dodecyl Sulphate Polyacrylamide Gel electrophoresis (SDS-PAGE), differences in protein expression were evaluated between adult and young snails of different subgroups. Dice similarity coefficient was calculated to determine the percentage of band sharing among the experimental subgroups. The results showed that the combination of similarities between age and compatibility status of the snails, lead to the highest similarity coefficient, followed by the combination of similarities of both genetic origin and age, even though they differ in the compatibility status. On the other hand, the differences in the genetic background, age and compatibility status, lead to the least similarity index. It was also found that the genetic background in young snails plays a major role in the determination of their compatibility, while the internal defense system has the upper hand in determining the level of adult compatibility. In conclusion, the findings of the present work highlight the great impact of the snail age in concomitance with the genetics and the internal defense in the determination of B. alexandrina/S.mansoni compatibility. Future works are recommended, as further characterization of the shared protein bands among the studied subgroups is needed to clarify their role in host-parasite relationship. Rev. Biol. Trop. 64 (4): 1747-1757. Epub 2016 December 01.


Resumen:La esquistosomiasis es una enfermedad crónica y debilitante que constituye una problemática de salud pública a nivel mundial. Debido a que Schistosoma mansoni está ampliamente distribuida y a que es el causante de la esquistosomiasis intestinal representa una gran amenaza. Biomphalaria es el hospedero intermedio y obligatorio para el estado larval, presenta una amplia distribución geográfica e infecta al ser humano. El objetivo fue identificar las proteínas responsables del efecto de compatibilidad en caracoles Biomphalaria alexandrina de distintos estadios a través de la diferenciación del total de proteínas en ellos. La investigación se llevó a cabo con caracoles de diferentes edades y antecedentes genéticos. Se estudiaron cuatro subgrupos (F1) de la progenie de caracoles susceptibles y resistentes reproducidos asexualmente (F0). Las tasas de infección de estos subgrupos (juvenil susceptible, adulto susceptible, juvenil resistente, adulto resistente) fueron 90 %, 75 %, 40 % y 0 %, respectivamente. Con la electroforesis en gel de poliacrilamida en presencia de dodecilsulfato sódico (SDS-PAGE) se evaluaron las diferencias en la expresión proteica entre los caracoles juveniles y adultos de los distintos subgrupos. Se calculó el coeficiente de similitud de Dice para determinar el porcentaje de bandas compartidas entre los subgrupos experimentales. Los resultados mostraron que la combinación de similitudes entre la edad y el estado de compatibilidad de los caracoles genera el mayor coeficiente de similitud seguido por el de la combinación de similitudes tanto de la edad como del origen genético aunque varían en el estado de compatibilidad. Por otra parte, las diferencias en los antecedentes genéticos, la edad y el estado de compatibilidad generan el índice de similitud más bajo. También se encontró que el antecedente genético en caracoles juveniles es importante en la determinación de su compatibilidad, mientras que el sistema de defensa interno es el que determina el nivel de compatibilidad en adultos. En conclusión, los resultados de este trabajo resaltan la importancia de la edad del caracol en conjunto con la genética y la defensa interna para determinar la compatibilidad de B. alexandrina/S.mansoni. Se recomienda realizar futuros trabajos así como una mayor caracterización de las bandas proteicas compartidas entre los subgrupos estudiados para esclarecer su papel en la relación hospedero-parásito.


Subject(s)
Animals , Biomphalaria/parasitology , Biomphalaria/chemistry , Schistosomiasis mansoni/parasitology , Proteins/analysis , Reference Values , Biomphalaria/genetics , Biomarkers/analysis , Proteins/genetics , Age Factors , Electrophoresis, Polyacrylamide Gel , Host-Parasite Interactions , Molecular Weight
12.
Rev Biol Trop ; 64(4): 1747-57, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29465950

ABSTRACT

Schistosomiasis remains a disease of major global public health concern since it is a chronic and debilitating illness. The widely distributed Schistosoma mansoni that causes intestinal schistosomiasis represents a great threat. Its world-wide distribution is permitted by the broad geographic range of the susceptible species of its intermediate host, Biomphalaria, which serves as an obligatory host for the larval stage, at which humans get infected. The objectives were to identify the proteins responsible for the snails' compatibility outcome through differentiation between the total proteins among Biomphalaria alexandrina snails at different ages. The work was conducted on snails that differ in age and genetic backgrounds. Four subgroups (F1) from the progeny of self-reproduced susceptible and resistant snails (F0) were studied. Infection rates of these subgroups (young susceptible, adult susceptible, young resistant and adult resistant) were 90 %, 75 %, 40 % and 0 %, respectively. Using Sodium Dodecyl Sulphate Polyacrylamide Gel electrophoresis (SDS-PAGE), differences in protein expression were evaluated between adult and young snails of different subgroups. Dice similarity coefficient was calculated to determine the percentage of band sharing among the experimental subgroups. The results showed that the combination of similarities between age and compatibility status of the snails, lead to the highest similarity coefficient, followed by the combination of similarities of both genetic origin and age, even though they differ in the compatibility status. On the other hand, the differences in the genetic background, age and compatibility status, lead to the least similarity index. It was also found that the genetic background in young snails plays a major role in the determination of their compatibility, while the internal defense system has the upper hand in determining the level of adult compatibility. In conclusion, the findings of the present work highlight the great impact of the snail age in concomitance with the genetics and the internal defense in the determination of B. alexandrina/S.mansoni compatibility. Future works are recommended, as further characterization of the shared protein bands among the studied subgroups is needed to clarify their role in host-parasite relationship.


Subject(s)
Biomphalaria/chemistry , Biomphalaria/parasitology , Proteins/analysis , Schistosomiasis mansoni/parasitology , Age Factors , Animals , Biomarkers/analysis , Biomphalaria/genetics , Electrophoresis, Polyacrylamide Gel , Host-Parasite Interactions , Molecular Weight , Proteins/genetics , Reference Values , Schistosomiasis mansoni/genetics
13.
Asian Pac J Trop Med ; 8(11): 881-888, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26614986

ABSTRACT

Egypt has been plagued by many neglected tropical diseases since Pharaonic time. These diseases are Schistosomiasis, soil-transmitted helminthiasis, lymphatic filariasis, leishmaniasis and fascioliasis beside the epidermal parasitic skin diseases. Indeed, theses diseases still persist as public health problem in the country by the influence of demographic, socioeconomic and environmental obstacles. This study seeks for understanding the contribution of each factor in each obstacle in neglected tropical diseases perpetuation which in turn could help the governorate in planning integrated control strategies. It was found that poverty, unregulated urbanization and inadequate sanitation are important socioeconomic factors that have great effect on the transmission dynamics of the diseases. The environmental factors which affect the epidemiology of these diseases in the country are scarcity of water, construction of dams, land reclamation for agriculture beside the climate factors. Unfortunately, the panic increase in the population growth rate minimizes the efforts done by the governorate to elevate the public health services. These conditions also affect the transmission of epidermal parasitic skin diseases including scabies, head lice and hookworm-related cutaneous larva migrans. The control programs and the recommendations to combat the diseases were discussed. The present study showed that the ecological factors affecting each neglected tropical disease in Egypt are somewhat similar which makes it worthy to develop an integrated control approaches aiming at improving the leading factors of neglected tropical diseases circulation in the country.

14.
Vet Parasitol ; 205(3-4): 712-6, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25277545

ABSTRACT

Biomphalaria species that act as an intermediate host for Schistosoma mansoni have different degrees of susceptibility and different internal defense system responses against parasites. Of these species, Biomphalaria alexandrina represents the only intermediate host in Egypt. Given the limited data on the efficacy of the B. alexandrina internal defense system in comparison to that of other species, we sought to better understand its defense against S. mansoni. We performed in vitro hemocyte adherence assay using whole hemolymph and in vitro reaction using the hemocyte-free hemolymph of susceptible and resistant snails against transformed mother sporocysts. The results demonstrated that the interacting factors between the parasite and the hemolymph of the resistant and susceptible snails do not act in a similar manner. Destruction of the parasite was a restricted function of the hemocytes among resistant snails only. This study demonstrates the key role played by snail hemocytes as a first line of defense against the parasite. The incubation of the hemocyte-free hemolymph of both susceptible and resistant snails with the sporocysts did not lead to any changes in the sporocysts shape or integrity. This immunological variance demonstrated between susceptible and resistant snails could be useful to differentiate between susceptible and resistant snails in future field studies. In addition, the results may help further studies to explain the process of attraction, encapsulation and subsequent killing of S. mansoni in its intermediate host.


Subject(s)
Biomphalaria/parasitology , Host-Parasite Interactions , Schistosoma mansoni/physiology , Animals , Biomphalaria/immunology , Cell Adhesion , Disease Resistance , Disease Susceptibility , Egypt , Hemocytes/immunology , Hemocytes/parasitology , Hemolymph , Oocysts , Schistosoma mansoni/immunology
15.
Lab Med ; 45(1): 65-73, 2014.
Article in English | MEDLINE | ID: mdl-24719990

ABSTRACT

OBJECTIVE: Auramine-phenol stain was compared with Kinyoun's acid-fast stain to detect coccidia parasites in fecal samples from immunocompromised patients. The comparison was based on the number of detected cases, sensitivity, specificity, time required for the procedure, ease of use, interpretation, and cost. METHODS: A total of 112 fecal specimens were examined by conventional methods: Direct wet saline smear, iodine smear, and formol ether sedimentation technique. Duplicate smears of the fecal concentrates were stained by both procedures. RESULTS: Kinyoun's and auramine-phenol stains detected 22 and 24 positive coccidia specimens respectively. The control group (27 immunocompetent relatives) showed a high incidence of Giardia lamblia infection. Kinyoun smears were difficult to interpret, while auramine smears were extremely easy to read, thus requiring less time. Artifacts were readily recognizable. The cost of auramine-phenol reagents was much higher than Kinyoun's acid-fast stain. CONCLUSION: Although the overall ranking of both staining techniques was high, the auramine-phenol stain was a more desirable test despite its higher cost.


Subject(s)
Benzophenoneidum , Coccidia/isolation & purification , Coloring Agents , Feces/parasitology , Phenols , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Young Adult
16.
J Biosci ; 38(3): 665-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23938396

ABSTRACT

The African species of Biomphalaria appeared as a result of the relatively recent west-to-east trans-Atlantic dispersal of the Biomphalaria glabrata-like taxon. In Egypt, Biomphalaria alexandrina is the intermediate host for Schistosoma mansoni. Biomphalaria alexandrina originated in the area between Alexandria and Rosetta and has historically been confined to the Nile Delta. Schistosoma mansoni reached Egypt via infected slaves and baboons from the Land of Punt through migrations that occurred as early as the Vth Dynasty. The suggestion of the presence of Schistosoma mansoni infection in Lower Egypt during Pharaonic times is discussed despite the fact that that there is no evidence of such infection in Egyptian mummies. It is only recently that Biomphalaria alexandrina colonized the Egyptian Nile from the Delta to Lake Nasser. This change was likely due to the construction of huge water projects, the development of new water resources essential for land reclamation projects and the movement of refugees from the Suez Canal zone to the Delta and vice versa. The situation with respect to Biomphalaria in Egypt has become complicated in recent years by the detection of Biomphalaria glabrata and a hybrid between both species; however, follow-up studies have demonstrated the disappearance of such species within Egypt. The National Schistosoma Control Program has made great strides with respect to the eradication of schistosoma; however, there has unfortunately been a reemergence of Schistosoma mansoni resistant to praziquantel. There are numerous factors that may influence the prevalence of snails in Egypt, including the construction of water projects, the increase in reclaimed areas, global climate change and pollution. Thus, continued field studies in addition to the cooperation of several scientists are needed to obtain an accurate representation of the status of this species. In addition, the determination of the genome sequence for Biomphalaria alexandrina and the use of modern technology will allow for the study of the host-parasite relationship at a molecular level.


Subject(s)
Biomphalaria/parasitology , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni , Animals , Disease Vectors , Egypt , Host-Parasite Interactions , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/epidemiology , Schistosomiasis mansoni/parasitology , Water
17.
Biomed Res Int ; 2013: 160320, 2013.
Article in English | MEDLINE | ID: mdl-23878796

ABSTRACT

Much effort has been made to control schistosomiasis infection in Egypt. However, enduring effects from such strategies have not yet been achieved. In this study, we sought to determine the genetic variability related to the interaction between Biomphalaria alexandrina snails and Schistosoma mansoni. Using RAPD-PCR with eight (10 mers) random primers, we were able to determine the polymorphic markers that differed between snails susceptible and resistant to Schistosoma mansoni infection using five primers out of the eight. Our results suggest that the RAPD-PCR technique is an efficient means by which to compare genomes and to detect genetic variations between schistosomiasis intermediate hosts. The RAPD technique with the above-noted primers can identify genomic markers that are specifically related to the Biomphalaria alexandrina/Schistosoma mansoni relationship in the absence of specific nucleotide sequence information. This approach could be used in epidemiologic surveys to investigate genetic diversity among Biomphalaria alexandrina snails. The ability to determine resistant markers in Biomphalaria alexandrina snails could potentially lead to further studies that use refractory snails as agents to control the spread of schistosomiasis.


Subject(s)
Genetic Markers/genetics , Genetic Variation/genetics , Polymorphism, Single Nucleotide/genetics , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/veterinary , Snails/genetics , Snails/microbiology , Animals , Chromosome Mapping , Disease Resistance/genetics , Genetic Predisposition to Disease/genetics
18.
Rev Biol Trop ; 60(3): 1195-204, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23025090

ABSTRACT

In Egypt, Biomphalaria alexandrina is the intermediate host for Schistosoma mansoni. The fates of Schistosoma miracidia in the snails varies between different species of Biomphalaria. The internal defense system is one of the factors that influence the susceptibility pattern of the snails. The interaction between Biomphalaria snails and S. mansoni needs to be identified for each species, and even between the members of the same species with different degrees of susceptibility. In the present study, the first generation of susceptible and resistant parents of B. alexandrina was examined histologically at the 30th day post exposure. The study includes the characterization of the immune response, as expressed by tissue reactions, of susceptible and resistant B. alexandrina snails against S. mansoni. It was also designed to determine the impact of the resistance increase in parent snails, on the mechanisms of interaction of their offspring against infection. The results showed that the infection rate of the offspring from the susceptible parents was 92%. No susceptible offspring was produced from the resistant parents. When the parents were of equal number of susceptible and resistant snails, they gave an offspring with an infection rate of 20%. Susceptible snails that had susceptible parents showed a higher degree of susceptibility than those that had both susceptible and resistant parents. A common feature of the resistant snails was the absence of any viable parasites. The tissue reactions of the resistant snails having only resistant parents occurred at the site of miracidial penetration. In resistant snails for which susceptible ones were included in their parents, the reactions occurred in the deep tissues. These results characterized the immune response of B. alexandrina snails against Schistosoma infection which was found to occur by two different mechanisms. One type of defense occurs in highly resistant snails, and employs direct miracidial destruction soon after parasite penetration. The other type occurs in less resistant snails where a delayed resistance development occurs after the dissemination of the sporocysts in the snail tissues. It seems that B. alexandrina snails respond more or less similar to B. glabrata. The results also proved that the immune response of the internal defense system increased with increasing the number of the inherited resistant genes.


Subject(s)
Biomphalaria/parasitology , Host-Parasite Interactions/physiology , Schistosoma mansoni/physiology , Animals , Disease Susceptibility , Schistosoma mansoni/pathogenicity
19.
Rev. biol. trop ; 60(3): 1195-1204, Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-659580

ABSTRACT

In Egypt, Biomphalaria alexandrina is the intermediate host for Schistosoma mansoni. The fates of Schistosoma miracidia in the snails varies between different species of Biomphalaria. The internal defense system is one of the factors that influence the susceptibility pattern of the snails. The interaction between Biomphalaria snails and S. mansoni needs to be identified for each species, and even between the members of the same species with different degrees of susceptibility. In the present study, the first generation of susceptible and resistant parents of B. alexandrina was examined histologically at the 30th day post exposure. The study includes the characterization of the immune response, as expressed by tissue reactions, of susceptible and resistant B. alexandrina snails against S. mansoni. It was also designed to determine the impact of the resistance increase in parent snails, on the mechanisms of interaction of their offspring against infection. The results showed that the infection rate of the offspring from the susceptible parents was 92%. No susceptible offspring was produced from the resistant parents. When the parents were of equal number of susceptible and resistant snails, they gave an offspring with an infection rate of 20%. Susceptible snails that had susceptible parents showed a higher degree of susceptibility than those that had both susceptible and resistant parents. A common feature of the resistant snails was the absence of any viable parasites. The tissue reactions of the resistant snails having only resistant parents occurred at the site of miracidial penetration. In resistant snails for which susceptible ones were included in their parents, the reactions occurred in the deep tissues. These results characterized the immune response of B. alexandrina snails against Schistosoma infection which was found to occur by two different mechanisms. One type of defense occurs in highly resistant snails, and employs direct miracidial destruction soon after parasite penetration. The other type occurs in less resistant snails where a delayed resistance development occurs after the dissemination of the sporocysts in the snail tissues. It seems that B. alexandrina snails respond more or less similar to B. glabrata. The results also proved that the immune response of the internal defense system increased with increasing the number of the inherited resistant genes.


En Egipto, Biomphalaria alexandrina es el huésped intermediario de Schistosoma mansoni. La supervivencia de los miracidios de Schistosoma en los caracoles varía entre las especies de Biomphalaria. El sistema de defensa interno es uno de los factores que influyen en el patrón de susceptibilidad de los caracoles. La interacción entre los caracoles Biomphalaria y S. mansoni requiere ser identificada para cada especie e incluso, entre los miembros de la misma especie con diferente grado de susceptibilidad. En el presente estudio, la primera generación de padres susceptibles y resistentes de B. alejandrina fue examinada histológicamente al día 30, después de la exposición. El trabajo fue realizado tanto para caracterizar la respuesta inmune, según las reacciones de los tejidos, de los caracoles susceptibles y resistentes de B. alejandrina contra S. mansoni. También, el estudio se diseñó para determinar el impacto en el aumento de la resistencia en los caracoles padres, en los mecanismos de interacción de sus crías contra la infección. Los resultados mostraron que la tasa de infección para las crías, de padres susceptibles, fue del 92%. No se originaron crías susceptibles de los padres resistentes. Cuando los padres incluían un número igual de caracoles susceptibles y resistentes, dieron como resultado crías con una tasa de infección del 20%. Los caracoles susceptibles que tuvieron padres susceptibles mostraron un mayor grado de susceptibilidad que los que tenían tanto padres sensibles como resistentes. Una característica común de los caracoles resistentes fue la ausencia de parásitos viables. Las reacciones en los tejidos de los caracoles resistentes de sólo padres resistentes ocurrió en el sitio de penetración del miracidio. En los caracoles resistentes, para los que variedades susceptibles fueron incluídas entre sus padres, las reacciones se produjeron en tejidos profundos. Los resultados caracterizaron la respuesta inmune de los caracoles B. alexandrina contra la infección por Schistosoma, que ocurre por dos mecanismos diferentes. El primer tipo de defensa la cual se produce en los caracoles con alta resistencia, utiliza la destrucción directa del miracidio poco después de la penetración de los parásitos. El segundo tipo se produce en los caracoles menos resistentes, en el cual se después de la difusión de los esporocistos en los tejidos del caracol. Parece que los caracoles B. alexandrina responden de una manera más o menos similar a B. glabrata. Los resultados también demostraron que la respuesta inmune del sistema de defensa interna aumentó cuando en el número de genes de resistencia heredados es mayor.


Subject(s)
Animals , Biomphalaria/parasitology , Host-Parasite Interactions/physiology , Schistosoma mansoni/physiology , Disease Susceptibility , Schistosoma mansoni/pathogenicity
20.
Parasitol Int ; 60(3): 247-54, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21458594

ABSTRACT

Of the several species of Biomphalaria snails worldwide that serve as the intermediate host for Schistosoma mansoni, Biomphalaria alexandrina is a species that is indigenous to Egypt. Recently, there has been much debate concerning the presence of Biomphalaria glabrata and the hybrid of the species with Biomphalaria alexandrina. Due to this debate, the absence of a clear explanation for the presence of B. glabrata in Egyptian water channels and the probability that they may be reintroduced, we conducted this field study to identify Biomphalaria species present in Alexandria water channels. Laboratory-adapted susceptible snails to Schistosoma mansoni of the following species were used as a reference; Biomphalaria alexandrina, Biomphalaria glabrata and their hybrid. These snails were used to perpetuate the Schistosoma life cycle at the Theodor Bilharz Research Institute (TBRI), Cairo, Egypt. Morphological and molecular studies were conducted on these reference snails as well as on the first generation of Biomphalaria snails from two areas in the Alexandria governorate. The morphological study included both external shell morphology and internal anatomy of the renal ridge. The molecular study used a species-specific PCR technique. The results demonstrated that there was an absence of Biomphalaria glabrata and the hybrid from Alexandria water channels. Moreover, the susceptibility patterns of these reference snails were studied by measuring the different parasitological parameters. It was found that Biomphalaria glabrata and the hybrid were significantly more susceptible than Biomphalaria alexandrina to the Egyptian strain of Schistosoma mansoni. The results demonstrated that if Biomphalaria glabrata was reintroduced and adapted to the local environment in Egypt, it would have important epidemiologic impacts that would have a serious effect on the health of Egyptian people.


Subject(s)
Biomphalaria/classification , Biomphalaria/physiology , Disease Vectors , Schistosoma mansoni/physiology , Animals , Biomphalaria/anatomy & histology , Biomphalaria/parasitology , DNA Primers , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Disease Susceptibility/parasitology , Disease Vectors/classification , Egypt , Fresh Water , Geography , Humans , Polymerase Chain Reaction/methods , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/transmission , Sensitivity and Specificity , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...