Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 93(9): 1476-1486, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33704854

ABSTRACT

The aim of this study is to find out a sustainable and cost-effective solution to manage hazardous shock loads from metal finishing and electro-coating industry. Results indicated that the main sources of hazardous wastewater are coming from batch chemical cleaning of degreasing basin (CCDB) (pH 13) and contains very hazardous chemicals, batch chemical cleaning of phosphating basin (CCPB) (pH 1.03) and contains high concentrations of iron (2300 mg/L) and zinc (2400 mg/L) and degreasing basin contents (DBC). Different treatment approaches were investigated. Results indicated that mixing CCDB with CCPB at their actual discharge allowed to form a self-coagulant of metal hydroxide which was utilized to treat the (DBC) followed by sedimentation. Removal efficiency of COD (87%), TSS (94%), and oil and grease (92%) were achieved. To compare the efficiency of this treatment approach, conventional chemical coagulation of DBC was carried out using FeCl3 but the amount was very high. In conclusion, results proved the advantage of using self-coagulation to treat DBC since it eliminates the use of external chemicals and provides an integrated solution for the three main sources of hazardous pollutants. PRACTITIONER POINTS: The manuscript provide an innovative and sustainable solution to the shock loads of hazardous wastewater generated from metal finishing and E-coating industry by utilizing iron-rich wastewater from chemical cleaning of phosphating basin and alkaline wastewater from chemical cleaning of degreasing basin to produce metal hydroxide. The metal hydroxide was cost-effective and technically effectively than external coagulant in treating highly polluted degreasing basin content at due discharge time. Iron-rich wastewater could be used to produce self-coagulant of iron hydroxide. Mixing iron rich wastewater and alkaline wastewater produce iron hydroxide. Iron hydroxide is cost-effective in treating hazardous wastewater of degreasing basin.


Subject(s)
Wastewater , Water Pollutants, Chemical , Industrial Waste/analysis , Iron , Metals , Waste Disposal, Fluid
2.
Environ Technol ; 40(2): 250-260, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29025371

ABSTRACT

This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m2/m3/d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p < .05) for all pollutants. Overall results indicated that PABF is a viable ecological engineering approach that can be optimized and applied to improve water quality with minimal consumption of energy and low sludge production compared with conventional activated sludge and trickling filter systems.


Subject(s)
Waste Disposal, Fluid , Wastewater , Bioreactors , Nitrification , Sewage
3.
Int J Phytoremediation ; 19(11): 1023-1028, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28436685

ABSTRACT

The effect of hydraulic loading rate (HLR) and hydraulic retention time (HRT) on the bioremediation of municipal wastewater using a pilot scale subsurface horizontal flow constructed treatment wetland (HFCTW) vegetated with Cyprus papyrus was investigated. Different HLRs were applied to the treatment system namely 0.18, 0.10, and 0.07 m3/m2. d with corresponding HRTs of 1.8, 3.2, and 4.7 days, respectively. The flow rate was 8 m3/d, and the average organic loading rate (OLR) was 0.037 kg BOD/m3/d. Results showed that the performance of the HFCTW was linearly affected by decreasing the HLR and increasing the HRT. The highest treatment efficiency was achieved at HRT (4.7 days) and HLR (0.07 m3/m2. d). The percentage reductions of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) were 86%, 87%, and 80%, respectively. Satisfactory nutrient removal was obtained. Also, removal of 2-3 logs of bacterial indicators of pollution was achieved. The dry biomass of Cyperus was 7.7 kg/m2 and proved to be very efficient in nitrification processes due to high diversity of the roots that increase the treatment surface area.


Subject(s)
Biodegradation, Environmental , Cyperus , Wastewater , Wetlands , Biomass
4.
ScientificWorldJournal ; 2014: 950348, 2014.
Article in English | MEDLINE | ID: mdl-24672400

ABSTRACT

The objective of this study is to investigate and assess the use of in situ deposit nanosilver (nAg2O) or nanocopper oxides (nCuO) into nonwoven polyester fabric (NWPF) as a safe and effective antibacterial filter of pollution from domestic wastewater. The bactericidal effect of both nAg2O and nCuO was examined against Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus) using agar diffusion disk method. In addition, the capability of nAg2O and nCuO as disinfectants for secondary treated domestic wastewater was investigated as a case study. Transmission electron microscope (TEM) confirmed the formation of nAg2O and nCuO particles with average particle sizes of 15 and 41 nm, respectively. Disk diffusion results showed that nAg2O had a higher bactericidal effect than nCuO. Moreover, the disinfection of secondary treated wastewater using 1.27 mg/cm(3) of nAg2O in the nonwoven fabric was capable of hindering 99.6% and 91.7% of total and fecal coliforms within 10 minutes with a residual value of 18 and 15 MPN-index/100 mL, respectively. The residual total and fecal coliform concentrations were far less than that stated in the national and international limits for wastewater reuse in agriculture purpose.


Subject(s)
Filtration/methods , Metal Nanoparticles/chemistry , Oxides/chemistry , Polyesters/chemistry , Wastewater/chemistry , Wastewater/microbiology , Disinfectants/chemistry , Water Purification/methods
5.
Water Sci Technol ; 69(1): 38-47, 2014.
Article in English | MEDLINE | ID: mdl-24434966

ABSTRACT

The aim of this study was to evaluate the performance of two pilot horizontal flow constructed wetlands (HFCWs) with and without vegetation. Three types of plants namely Canna, Phragmites australis and Cyprus papyrus were used. The surface area of each plant was 654 m(2). The flow rate was 20 m(3) d(-1) and the organic loading rate range was 1.7-3.4 kg BOD d(-1) with a detention time of 11 days. The results obtained showed that planted HFCW produced high quality effluent in terms of reduction of chemical oxygen demand (COD; 88%), biochemical oxygen demand (BOD; 91%) and total suspended solids (TSS; 92%) as well as nutrient removal. In addition, 4 logs of total coliform were removed from the planted unit compared with only 3 logs in the unplanted one. The phosphate uptake by the plants reached 29, 30.91 and 38.9 g P m(-2) for Canna, Phragmites and Cyprus, respectively, with 60% removal rate in the treated effluent. The nitrogen uptake by the same plants reached 63.1, 49.46 and 82.33 g N m(-2). Although, the unplanted unit proved to be efficient in the removal of COD, BOD and TSS, it lacks efficiency in pathogen and nutrient removal. The reclaimed wastewater, after disinfection, could be reused for non-restricted irrigation purposes.


Subject(s)
Waste Disposal, Fluid/methods , Wetlands , Biological Oxygen Demand Analysis , Egypt
SELECTION OF CITATIONS
SEARCH DETAIL
...