Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(3): e2302222, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37929897

ABSTRACT

Biomimetic cell culture systems are required to provide more physiologically relevant microenvironments for bone cells. Here, a simple 2.5D culture platform is proposed, combining adjustable stiffness and surface features that mimic bone topography by using sandpaper grits as master molds with two stiffness formulations of polydimethylsiloxane (PDMS). The subsequent replicas perfectly conform the grits and reproduce the corresponding negative relief with cavities separated by convex edges. Biomimicry is also provided by an extracellular matrix (ECM)-like thin film coating, using the layer-by-layer (LbL) method. The topographical features, alternating concave, and convex structures drive preosteoblasts organization and morphology. Strikingly, curvature orchestrates the commitment of preosteoblasts, with i) maturation to active osteoblasts able to produce a dense collagenous matrix that ultimately mineralizes in the cavities, and ii) edges hosting quiescent cells that synthetize a very thin immature collagen layer with no mineralization. In summary, the present in vitro culture system model offers a cell-instructive 2.5D microenvironment that controls preosteoblasts fate, leading to two coexisting subpopulations: mature osteoblasts and bone lining cells (BLC). This promising culture system opens new avenues to advanced tissue-engineered modeling and can be applied to precellularized bone biomaterials.


Subject(s)
Biomimetics , Osteoblasts , Cell Differentiation/physiology , Bone and Bones , Collagen/metabolism
2.
Front Cell Dev Biol ; 11: 1123299, 2023.
Article in English | MEDLINE | ID: mdl-37215080

ABSTRACT

Objective: Cartilage, as the majority of adult mammalian tissues, has limited regeneration capacity. Cartilage degradation consecutive to joint injury or aging then leads to irreversible joint damage and diseases. In contrast, several vertebrate species such as the zebrafish have the remarkable capacity to spontaneously regenerate skeletal structures after severe injuries. The objective of our study was to test the regenerative capacity of Meckel's cartilage (MC) upon mechanical injury in zebrafish and to identify the mechanisms underlying this process. Methods and Results: Cartilage regenerative capacity in zebrafish larvae was investigated after mechanical injuries of the lower jaw MC in TgBAC(col2a1a:mCherry), to visualize the loss and recovery of cartilage. Confocal analysis revealed the formation of new chondrocytes and complete regeneration of MC at 14 days post-injury (dpi) via chondrocyte cell cycle re-entry and proliferation of pre-existing MC chondrocytes near the wound. Through expression analyses, we showed an increase of nrg1 expression in the regenerating lower jaw, which also expresses Nrg1 receptors, ErbB3 and ErbB2. Pharmacological inhibition of the ErbB pathway and specific knockdown of Nrg1 affected MC regeneration indicating the pivotal role of this pathway for cartilage regeneration. Finally, addition of exogenous NRG1 in an in vitro model of osteoarthritic (OA)-like chondrocytes induced by IL1ß suggests that Nrg1/ErbB pathway is functional in mammalian chondrocytes and alleviates the increased expression of catabolic markers characteristic of OA-like chondrocytes. Conclusion: Our results show that the Nrg1/ErbB pathway is required for spontaneous cartilage regeneration in zebrafish and is of interest to design new therapeutic approaches to promote cartilage regeneration in mammals.

SELECTION OF CITATIONS
SEARCH DETAIL
...