Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tumour Biol ; 43(1): 225-247, 2021.
Article in English | MEDLINE | ID: mdl-34542050

ABSTRACT

BACKGROUND: The limitations of surgery, radiotherapy, and chemotherapy in cancer treatment and the increase in the application of nanomaterials in the field of biomedicine have promoted the use of nanomaterials in combination with radiotherapy for cancer treatment. OBJECTIVE: To improve the efficiency of cancer treatment, curcumin-naringenin loaded dextran-coated magnetic nanoparticles (CUR-NAR-D-MNPs) were used as chemotherapy and in combination with radiotherapy to verify their effectiveness in treating tumors. METHODS: CUR-NAR-D-MNPs were prepared and studied by several characterization methods. Median inhibitory concentration (IC50) and cellular toxicity were evaluated by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell death and radiosensitization were studied by acridine orange/ethidium bromide dual staining of MCF-7 human breast cancer cells. RESULTS: CUR-NAR-D-MNPs induce apoptosis and inhibited cell proliferation through reactive oxygen species (ROS) generation. CUR-NAR-D-MNPs used alone had a certain therapeutic effect on tumors. CUR-NAR-D-MNPs plus radiotherapy significantly reduced the tumor volume and led to cell cycle arrest and induction of apoptosis through modulation of P53high, P21high, TNF-αlow, CD44low, and ROShigh signalingCONCLUSIONS:CUR-NAR-D-MNPs are effective in the treatment of tumors when combined with radiotherapy, and show radiosensitization effects against cancer proliferation in vitro and in vivo.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/therapy , Curcumin/chemistry , Flavanones/chemistry , Magnetite Nanoparticles/chemistry , Radiation-Sensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemoradiotherapy , Curcumin/pharmacology , Curcumin/therapeutic use , Dextrans/chemistry , Female , Flavanones/pharmacology , Flavanones/therapeutic use , Humans , MCF-7 Cells , Magnetite Nanoparticles/therapeutic use , Mice , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Rats , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
2.
Clin Nutr ESPEN ; 40: 383-391, 2020 12.
Article in English | MEDLINE | ID: mdl-33183567

ABSTRACT

Diabetes mellitus is a group of metabolic disorders with great challenge in its treatment due to its pathological complication. In recent decade, there is extensive use of applying nanotechnology to medicinal plants as a trend in diabetes treatment due to phytochemical constituents. The present study aimed to evaluate the hypoglycemic effect of selenium cleome droserifolia nanoparticles (Se-CNPs) and/or Galvus met® treatment on streptozotocin induced diabetes mellitus in male rats. Fifty male Wistar rats were divided equally into five groups: control group, control diabetic group, diabetic group treated with Se-CNPs, diabetic group treated with Galvus met® and diabetic group treated with Se-CNPs plus Galvus met®. Glucose and insulin levels, Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST), Total Cholesterol (TC), Triacylglycerols (TG), High Density Lipoprotein (HDL-c), Very Low Density Lipoprotein cholesterol (VLDL-c), Low Density Lipoprotein cholesterol (LDL-c) and (NEFAs), urea and creatinine were evaluated. Also, histopathological changes in pancreatic tissue were examined. The results showed significant elevation in serum glucose concentration, ALT and AST activities, TG, LDL-c, VLDL-c and Non Esterified Fatty Acids (NEFAs), urea and creatinine levels while a significant decrease in serum insulin and HDL-c concentration in untreated diabetic rats when compared with control. Meanwhile, daily administration of Se-CNPs and/or Galvus met® to diabetic rats showed significant amelioration of these parameters.


Subject(s)
Cleome , Diabetes Mellitus, Experimental , Nanoparticles , Selenium , Animals , Blood Glucose , Diabetes Mellitus, Experimental/drug therapy , Rats , Rats, Wistar
3.
Environ Sci Pollut Res Int ; 26(24): 25167-25177, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31256392

ABSTRACT

Cadmium (Cd) is a common environmental pollutant that threatens humans' and animals' health. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used drugs due to their wide therapeutic action; however, they have significant side effects. Since, under many circumstances, humans and animals may be co-exposed to Cd and NSAIDs, the current investigation was assigned to explore the intertwining relationship between Cd and NSAIDs. Four groups of male Wister rats were used: control group: rats received saline; Cd group: rats received cadmium (Cd, 2 mg/kg) orally; Px group: rats received a NSAID (piroxicam, Px, 7 mg/kg, i.p.); and Cd+Px group: rats received both Cd+Px. All treatments were given once a day for 28 consecutive days. Then, blood samples, stomach, liver, and kidney tissues were collected. The results indicated that Px provoked gastric ulcer indicated by high ulcer index, while Cd had no effect on the gastric mucosa. In addition, treatment with Cd or Px alone significantly induced liver and kidney injuries indicated by serum elevations of AST, ALT, ALP, ALB, total protein, creatinine, and urea along with histopathological alterations. Significant increases in malondialdehyde and reduction in GSH and CAT contents were reported along with up-regulated expression of Bax and Bcl-2 after Cd or Px exposure. However, when Cd and Px were given in a combination, Cd obviously potentiated the Px-inflicted cellular injury and death in the liver and kidney but not in the stomach when compared to their individual exposure. This study concluded that oxidative stress mechanisms were supposed to be the main modulator in promoting Cd and Px toxicities when given in combination.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cadmium/metabolism , Piroxicam/metabolism , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Creatinine/metabolism , Kidney/drug effects , Liver/drug effects , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...