Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 15(7): 2538-2552, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39026636

ABSTRACT

The current study focuses on developing a single molecule that acts as an antiproliferative agent with dual or multi-targeted action, reducing drug resistance and adverse effects. A new series of 4-pyrazolylquinolin-2-ones (5a-j) with apoptotic antiproliferative effects as dual EGFR/BRAFV600E inhibitors were designed and synthesized. Compounds 5a-j were investigated for their cell viability effect against a normal cell line (MCF-10A). Results showed that none of the compounds were cytotoxic, and all 5a-j demonstrated more than 90% cell viability at 50 µM concentration. Using erlotinib as a reference, the MTT assay investigated the antiproliferative impact of targets 5a-j against four human cancer cell lines. Compounds 5e, 5f, 5h, 5i, and 5j were the most potent antiproliferative agents with GI50 values of 42, 26, 29, 34, and 37 nM, making compounds 5f and 5h more potent than erlotinib (GI50 = 33 nM). Moreover, compounds 5e, 5f, 5h, 5i, and 5j were further investigated as dual EGFR/BRAFV600E inhibitors, and results revealed that compounds 5f, 5h, and 5i are potent antiproliferative agents that act as dual EGFR/BRAFV600E inhibitors. Cell cycle analysis and apoptosis detection revealed that compound 5h displaying cell cycle arrest at the G1 transition could induce apoptosis with a high necrosis percentage. Docking studies revealed that compound 5f exhibited a strong affinity for EGFR and BRAFV600E, with high docking scores of -8.55 kcal mol-1 and -8.22 kcal mol-1, respectively. Furthermore, the ADME analysis of compounds 5a-j highlighted the diversity in their pharmacokinetic properties, emphasizing the importance of experimental validation.

2.
Front Chem ; 12: 1419242, 2024.
Article in English | MEDLINE | ID: mdl-38911996

ABSTRACT

DNA gyrase and topoisomerase IV show great potential as targets for antibacterial medicines. In recent decades, various categories of small molecule inhibitors have been identified; however, none have been effective in the market. For the first time, we developed a series of disalicylic acid methylene/Schiff bases hybrids (5a-k) to act as antibacterial agents targeting DNA gyrase and topoisomerase IV. The findings indicated that the new targets 5f-k exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria, with efficacy ranging from 75% to 115% of the standard ciprofloxacin levels. Compound 5h demonstrated the greatest efficacy compared to the other compounds tested, with minimum inhibitory concentration (MIC) values of 0.030, 0.065, and 0.060 µg/mL against S. aureus, E. coli, and P. aeruginosa. 5h had a MIC value of 0.050 µg/mL against B. subtilis, which is five times less potent than ciprofloxacin. The inhibitory efficacy of the most potent antibacterial derivatives 5f, 5h, 5i, and 5k against E. coli DNA gyrase was assessed. The tested compounds demonstrated inhibitory effects on E. coli DNA gyrase, with IC50 values ranging from 92 to 112 nM. These results indicate that 5f, 5h, 5i, and 5k are more effective than the reference novobiocin, which had an IC50 value of 170 nM. Compounds 5f, 5h, 5i, and 5k were subjected to additional assessment against E. coli topoisomerase IV. Compounds 5h and 5i, which have the highest efficacy in inhibiting E. coli gyrase, also demonstrated promising effects on topoisomerase IV. Compounds 5h and 5i exhibit IC50 values of 3.50 µM and 5.80 µM, respectively. These results are much lower and more potent than novobiocin's IC50 value of 11 µM. Docking studies demonstrate the potential of compound 5h as an effective dual inhibitor against E. coli DNA gyrase and topoisomerase IV, with ADMET analysis indicating promising pharmacokinetic profiles for antibacterial drug development.

3.
Chem Biol Drug Des ; 103(1): e14422, 2024 01.
Article in English | MEDLINE | ID: mdl-38230772

ABSTRACT

Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 µM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 µM compared to IC50 of 1.10 µM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.


Subject(s)
Antineoplastic Agents , Humans , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , ErbB Receptors/metabolism , Doxorubicin/pharmacology , Protein Kinase Inhibitors/pharmacology , Molecular Docking Simulation , Cyclin-Dependent Kinase 2/metabolism
4.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38004388

ABSTRACT

A novel series of hybrid compounds comprising quinazolin-4-one and 3-cyanopyridin-2-one structures has been developed, with dual inhibitory actions on both EGFR and BRAFV600E. These hybrid compounds were tested in vitro against four different cancer cell lines. Compounds 8, 9, 18, and 19 inhibited cell proliferation significantly in the four cancer cells, with GI50 values ranging from 1.20 to 1.80 µM when compared to Doxorubicin (GI50 = 1.10 µM). Within this group of hybrids, compounds 18 and 19 exhibited substantial inhibition of EGFR and BRAFV600E. Molecular docking investigations provided confirmation that compounds 18 and 19 possess the capability to inhibit EGFR and BRAFV600E. Moreover, computational ADMET prediction indicated that most of the newly synthesized hybrids have low toxicity and minimal side effects.

5.
Molecules ; 28(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37764362

ABSTRACT

A series of novel 3-cyanopyridone/pyrazoline hybrids (21-30) exhibiting dual inhibition against EGFR and BRAFV600E has been developed. The synthesized target compounds were tested in vitro against four cancer cell lines. Compounds 28 and 30 demonstrated remarkable antiproliferative activity, boasting GI50 values of 27 nM and 25 nM, respectively. These hybrids exhibited dual inhibitory effects on both EGFR and BRAFV600E pathways. Compounds 28 and 30, akin to Erlotinib, displayed promising anticancer potential. Compound 30 emerged as the most potent inhibitor against cancer cell proliferation and BRAFV600E. Notably, both compounds 28 and 30 induced apoptosis by elevating levels of caspase-3 and -8 and Bax, while downregulating the antiapoptotic Bcl2 protein. Molecular docking studies confirmed the potential of compounds 28 and 30 to act as dual EGFR/BRAFV600E inhibitors. Furthermore, in silico ADMET prediction indicated that most synthesized 3-cyanopyridone/pyrazoline hybrids exhibit low toxicity and minimal adverse effects.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Structure-Activity Relationship , Proto-Oncogene Proteins B-raf , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Cell Proliferation , ErbB Receptors/metabolism , Drug Screening Assays, Antitumor , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology
6.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240450

ABSTRACT

Some new Bis-pyrazoline hybrids 8-17 with dual EGFR and BRAFV600E inhibitors have been developed. The target compounds were synthesized and tested in vitro against four cancer cell lines. Compounds 12, 15, and 17 demonstrated strong antiproliferative activity with GI50 values of 1.05 µM, 1.50 µM, and 1.20 µM, respectively. Hybrids showed dual inhibition of EGFR and BRAFV600E. Compounds 12, 15, and 17 inhibited EGFR-like erlotinib and exhibited promising anticancer activity. Compound 12 is the most potent inhibitor of cancer cell proliferation and BRAFV600E. Compounds 12 and 17 induced apoptosis by increasing caspase 3, 8, and Bax levels, and resulted in the downregulation of the antiapoptotic Bcl2. The molecular docking studies verified that compounds 12, 15, and 17 have the potential to be dual EGFR/BRAFV600E inhibitors. Additionally, in silico ADMET prediction revealed that most synthesized bis-pyrazoline hybrids have low toxicity and adverse effects. DFT studies for the two most active compounds, 12 and 15, were also carried out. The values of the HOMO and LUMO energies, as well as softness and hardness, were computationally investigated using the DFT method. These findings agreed well with those of the in vitro research and molecular docking study.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Density Functional Theory , Drug Design , ErbB Receptors , Proto-Oncogene Proteins B-raf , Pyrazoles , Humans , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , ErbB Receptors/antagonists & inhibitors , Molecular Docking Simulation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/toxicity , Static Electricity , Structure-Activity Relationship , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity
7.
Arch Pharm (Weinheim) ; 356(4): e2200464, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36526595

ABSTRACT

As dual EGFR and BRAFV600E inhibitors, 2-(3-cyano-4,6-bis(aryl)-2-oxo-1,2-dihydropyridine-1-yl)-N-(4-cinnamoylphenyl) acetamide derivatives 8-20 were developed. Compounds 8, 12, and 13 showed strong antiproliferative activity when the target compounds were synthesized and tested in vitro against four cancer cell lines. These hybrids have a dual inhibition activity on EGFR and BRAFV600E , according to in vitro studies. The EGFR was inhibited by compounds 8, 12, and 13 with IC50 values between 89 and 110 nM, which were equivalent to those of erlotinib (IC50 = 80 nm). Compound 13 was found to be an effective inhibitor of the proliferation of cancer cells (GI50 = 0.72 µM) and demonstrated hopeful inhibitory activity of BRAFV600E (IC50 = 58 nm), which is superior to erlotinib (IC50 = 65 nm). Compound 13 caused apoptosis and showed cell cycle arrest in the G0/G1phase in a study on the MCF-7 cell line. The new compounds can fit tightly into the active sites of EGFR and BRAFV600E kinases, according to molecular docking analyses.


Subject(s)
Antineoplastic Agents , Chalcones , Humans , Structure-Activity Relationship , Erlotinib Hydrochloride/pharmacology , Cell Line, Tumor , Molecular Docking Simulation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/chemistry , Chalcones/pharmacology , Cell Proliferation , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Structure
8.
Bioorg Chem ; 89: 102997, 2019 08.
Article in English | MEDLINE | ID: mdl-31136902

ABSTRACT

One of the helpful ways to improve the effectiveness of anticancer agents and weaken drug resistance is to use hybrid molecules. therefore, the current study intended to introduce 20 novel xanthine/chalcone hybrids 9-28 of promising anticancer activity. Compounds 10, 11, 13, 14, 16, 20 and 23 exhibited potent inhibition of cancer cells growth with IC50 ranging from 1.0 ±â€¯0.1 to 3.5 ±â€¯0.4 µM compared to doxorubicin with IC50 ranging from 0.90 ±â€¯0.62 to 1.41 ±â€¯0.58 µM and that compounds 11 and 16 were the best. To verify the mechanism of their anticancer activity, compounds 10, 11, 13, 14, 16, 20 and 23 were evaluated for their EGFR inhibitory effect. The study results revealed that compound 11 showed IC50 = 0.3 µM on the target enzyme which is more potent than staurosporine reference drug (IC50 = 0.4 µM). Accordingly, the apoptotic effect of the most potent compounds 11 was extensively investigated and showed a marked increase in Bax level up to 29 folds, and down-regulation in Bcl2 to 0.28 fold, in comparison to the control. Furthermore, the effect of compound 11 on Caspases 3 and 8 was evaluated and was found to increase their levels by 8 and 14 folds, respectively. Also, the effect of compound 11 on the cell cycle and its cytotoxic effect were examined. Moreover, a molecular docking study was adopted to confirm mechanism of action.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chalcone/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Xanthine/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Xanthine/chemical synthesis , Xanthine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...