Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 2416, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29403000

ABSTRACT

Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Anxiety Agents/pharmacology , Anxiety Disorders/drug therapy , Cannabinoid Receptor Agonists/metabolism , Carbamates/pharmacology , Dioxanes/pharmacology , Enzyme Inhibitors/pharmacology , Receptors, Cannabinoid/genetics , Stress, Psychological/drug therapy , Acute Disease , Amides , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anxiety Disorders/physiopathology , Arachidonic Acids/metabolism , Carbamates/chemical synthesis , Chronic Disease , Dioxanes/chemical synthesis , Endocannabinoids/metabolism , Enzyme Inhibitors/chemical synthesis , Ethanolamines/metabolism , Female , Gene Expression , Male , Mice , Oleic Acids/metabolism , Palmitic Acids/metabolism , Polyunsaturated Alkamides/metabolism , Rats, Sprague-Dawley , Receptors, Cannabinoid/metabolism , Stress, Psychological/physiopathology
2.
J Med Chem ; 45(13): 2824-31, 2002 Jun 20.
Article in English | MEDLINE | ID: mdl-12061884

ABSTRACT

1,4-Addition of benzylamine to 2(5H)-furanone followed by dialkylation of the 3-position with allylbromide gave (+/-)-4-benzyl-3,3-diallyl-2(3H)-furanone (8), which served as the intermediate for the synthesis of various N-substituted 4-amino-3,3-dipropyl-2(3H)-furanones (+/-)-9a-l. The compounds were evaluated for their capacity to potentiate or inhibit GABA-evoked currents in Xenopus laevis oocytes expressing recombinant alpha1beta2gamma2 GABA(A) receptors. The benzyl, ethyl, and allyl carbamates ((R)-9a (100 microM), (+/-)-9b (100 microM), (+/-)-9c (200 microM)) stimulated GABA currents by 279 +/- 47%, 426 +/- 8%. and 765 +/- 61%, respectively, while the phenylcarboxamide (+/-)-9f (200 microM) stimulated currents by 420 +/- 33%. Concentration-response studies showed that compound 9c was approximately twice as potent in stimulating GABA currents as alpha-EMTBL (2), the most potent 3,3-dialkylbutyrolactone known to date. On the other hand, the N-sulfonyl analogues were much less active or even inhibited GABA-evoked currents. In vitro radioligand displacement studies on rat brain membranes showed that these compounds did not bind to the benzodiazepine or GABA recognition sites of the GABA(A) receptor. However, these compounds generally weakly displaced [(35)S]-TBPS (approximately 50% displacement at 100 microM), though potencies did not correlate with GABA current potentiation. Results obtained with alpha1beta1 and mutant alpha1beta2N265S receptors, which compared to alpha1beta2 receptors are both much less sensitive to current stimulation produced by the anticonvulsant loreclezole, suggest that at least some of these aminobutyrolactones, (e.g., 9a, 9c), and interestingly also alpha-EMTBL, share stimulatory properties with loreclezole.


Subject(s)
Anticonvulsants/chemistry , Furans/chemistry , Lactones/chemistry , Receptors, GABA-A/drug effects , Triazoles/chemistry , Allosteric Regulation , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Binding, Competitive , Brain/metabolism , Electricity , Furans/pharmacology , In Vitro Techniques , Lactones/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Patch-Clamp Techniques , Radioligand Assay , Rats , Receptors, GABA-A/physiology , Recombinant Proteins/metabolism , Stereoisomerism , Structure-Activity Relationship , Triazoles/pharmacology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...