Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(56): 35051-35060, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493174

ABSTRACT

The printing of three-dimensional (3D) porous electrodes for Li-ion batteries is considered a key driver for the design and realization of advanced energy storage systems. While different 3D printing techniques offer great potential to design and develop 3D architectures, several factors need to be addressed to print 3D electrodes, maintaining an optimal trade-off between electrochemical and mechanical performances. Herein, we report the first demonstration of 3D printed Si-based electrodes fabricated using a simple and cost-effective fused deposition modelling (FDM) method, and implemented as anodes in Li-ion batteries. To fulfil the printability requirement while maximizing the electrochemical performance, the composition of the FDM filament has been engineered using polylactic acid as the host polymeric matrix, a mixture of carbon black-doped polypyrrole and wet-jet milling exfoliated few-layer graphene flakes as conductive additives, and Si nanoparticles as the active material. The creation of a continuous conductive network and the control of the structural properties at the nanoscale enabled the design and realization of flexible 3D printed anodes, reaching a specific capacity up to ∼345 mA h g-1 at the current density of 20 mA g-1, together with a capacity retention of 96% after 350 cycles. The obtained results are promising for the fabrication of flexible polymeric-based 3D energy storage devices to meet the challenges ahead for the design of next-generation electronic devices.

2.
ACS Appl Mater Interfaces ; 7(24): 13503-11, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26028432

ABSTRACT

A facile electrospinning method with subsequent heat treatments is employed to prepare carbon nanofibers (CNFs) containing uniformly dispersed Co3O4 nanoparticles as electrodes for supercapacitors. The Co3O4/CNF electrodes with ∼68 wt % active particles deliver a remarkable capacitance of 586 F g(-1) at a current density of 1 A g(-1). When the current density is increased to 50 A g(-1), ∼66% of the original capacitance is retained. The electrodes also present excellent cyclic stability of 74% capacity retention after 2000 cycles at 2 A g(-1). These superior electrochemical properties are attributed to the uniform dispersion of active particles in the CNF matrix, which functions as a conductive support. The onionlike graphitic layers formed around the Co3O4 nanoparticles not only improve the electrical conductivity of the electrode but also prevent the separation of the nanoparticles from the carbon matrix.

3.
ACS Appl Mater Interfaces ; 6(21): 18971-80, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25317550

ABSTRACT

Nanocomposites consisting of ultrafine, cobalt carbonate nanoneedles and 3D porous graphene aerogel (CoCO3/GA) are in situ synthesized based on a one-step hydrothermal route followed by freeze-drying. A further heat treatment produces cobalt oxide nanoparticles embedded in the conductive GA matrix (Co(3)O(4)/GA). Both the composite anodes deliver excellent specific capacities depending on current density employed: the CoCO(3)/GA anode outperforms the Co(3)O(4)/GA anode at low current densities, and vice versa at current densities higher than 500 mA g(-1). Their electrochemical performances are considered among the best of similar composite anodes consisting of CoCO(3) or Co(3)O(4) active particles embedded in a graphene substrate. The stable multistep electrochemical reactions of the carbonate compound with a unique nanoneedle structure contribute to the excellent cyclic stability of the CoCO(3)/GA electrode, whereas the highly conductive networks along with low charge transfer resistance are responsible for the high rate performance of the Co(3)O(4)/GA electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...