Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 10592, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719900

ABSTRACT

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Subject(s)
Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Hexanes , Phytochemicals , Vegetables , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Vegetables/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Hexanes/chemistry , Apiaceae/chemistry , Microbial Sensitivity Tests , Allylbenzene Derivatives , alpha-Linolenic Acid/analysis , alpha-Linolenic Acid/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fatty Acids, Unsaturated/analysis , Staphylococcus aureus/drug effects , Dioxolanes
3.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677772

ABSTRACT

Recently, functional foods have been a subject of great interest in dietetics owing not only to their nutritional value but rather their myriad of health benefits. Moreover, an increase in consumers' demands for such valuable foods warrants the development in not only production but rather tools of quality and nutrient assessment. Bee products, viz., pollen (BP) and bread, are normally harvested from the flowering plants with the aid of bees. BP is further subjected to a fermentation process in bee hives to produce the more valuable and bioavailable BB. Owing to their nutritional and medicinal properties, bee products are considered as an important food supplements rich in macro-, micro-, and phytonutrients. Bee products are rich in carbohydrates, amino acids, vitamins, fatty acids, and minerals in addition to a myriad of phytonutrients such as phenolic compounds, anthocyanins, volatiles, and carotenoids. Moreover, unsaturated fatty acids (USFAs) of improved lipid profile such as linoleic, linolenic, and oleic were identified in BP and BB. This work aims to present a holistic overview of BP and BB in the context of their composition and analysis, and to highlight optimized extraction techniques to maximize their value and future applications in nutraceuticals.


Subject(s)
Anthocyanins , Bread , Bees , Animals , Bread/analysis , Anthocyanins/analysis , Pollen/chemistry , Vitamins/analysis , Phytochemicals/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...