Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Psychiatr Res ; 172: 171-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394763

ABSTRACT

RATIONALE: Depression is the most prevalent psychiatric disorder worldwide. Although numerous antidepressant treatments are available, there is a serious clinical concern due to their severe side effects and the fact that some depressed patients are resistant to them. Lithium is the drug of choice for bipolar depression and has been used as adjunct therapy with other groups of antidepressants. OBJECTIVES: The present study aims to investigate the effect of lithium augmentation with cerebrolysin on the neurochemical, behavioral and histopathological alterations induced in the reserpine model of depression. METHODS: The animals were divided into control and reserpine-induced model of depression. The model animals were further divided into rat model of depression, rat model treated with lithium, rat model treated with cerebrolysin and rat model treated with a combination of lithium and cerebrolysin. RESULTS: Treatment with lithium, cerebrolysin, or their combination alleviated most of the changes in behavior, oxidative stress parameters, acetylcholinesterase and monoamines in the cortex and hippocampus of the reserpine-induced model of depression. It also improved the alterations in brain-derived neurotrophic factor (BDNF) and histopathology induced by reserpine. CONCLUSIONS: The augmentation of lithium with cerebrolysin showed a clear beneficial effect in the present model of depression suggesting the use of cerebrolysin as an adjuvant in antidepressant treatment.


Subject(s)
Amino Acids , Depression , Lithium , Humans , Rats , Animals , Depression/chemically induced , Depression/drug therapy , Reserpine , Acetylcholinesterase , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor
2.
Sci Rep ; 13(1): 7321, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147356

ABSTRACT

Many chemotherapeutic drugs cause adverse pulmonary reactions leading to severe pulmonary disease. Though methotrexate (MTX) is used for the treatment of cancer and other diseases, it is highly toxic with multiple adverse effects including pulmonary toxicity. Essential oils represent an open frontier for pharmaceutical sciences due to their wide range of pharmacological properties. Pumpkin seeds oil (PSO) was used to investigate its ability to alleviate methotrexate-induced lung toxicity in rats. Lung tissue from MTX-treated group revealed a decrease in malondialdehyde, glutathione, and nitric oxide accompanied by a marked inhibition in cholinesterase activity, and enhanced catalase activity, tumor necrosis factor-α, interleukin-6 and vascular endothelial growth factor levels. Analysis of PSO revealed that the oil was rich in hexadecanoic acid, decane methyl esters, squalene, polydecane, docosane, and other derivatives. Administration of PSO ameliorated the oxidant/antioxidant and proinflammatory changes induced by MTX in the lung tissue. Histological examinations confirmed the potency of PSO in reducing the histopathological alterations induced by MTX. Immunohistochemical analysis showed decreased nuclear factor-kappa B and caspase 3 expression after PSO. The present data indicated the protective efficiency of PSO against MTX-induced lung injury by decreasing oxidative damage, inflammation and apoptosis and could thus be recommended as an adjuvant therapy.


Subject(s)
Cucurbita , Methotrexate , Rats , Animals , Methotrexate/toxicity , Rats, Wistar , Vascular Endothelial Growth Factor A/pharmacology , Antioxidants/pharmacology , Plant Oils/pharmacology , Plant Oils/therapeutic use , Oxidative Stress , Lung
3.
Metab Brain Dis ; 38(5): 1513-1529, 2023 06.
Article in English | MEDLINE | ID: mdl-36847968

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Rats , Male , Animals , Reserpine/pharmacology , Rats, Wistar , Lithium , Acetylcholinesterase , Disease Models, Animal
4.
Metab Brain Dis ; 37(2): 343-357, 2022 02.
Article in English | MEDLINE | ID: mdl-35048324

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease that afflicts millions of people all over the world. Intracerebroventricular (ICV) injection of a sub-diabetogenic dose of streptozotocin (STZ) was established as an experimental animal model of AD. The present study was conducted to evaluate the efficacy of curcumin nanoparticles (CNs) against the behavioral, neurochemical and histopathological alterations induced by ICV-STZ. The animals were divided into: control animals, the animal model of AD that received a single bilateral ICV microinjection of STZ, and the animals protected by a daily oral administration of CNs for 6 days before the ICV-STZ injection. The animals of all groups were subjected to surgical operation on the 7th day of administration. Then the administration of distilled water or CNs was continued for 8 days. The ICV-STZ microinjection produced cognitive impairment as evident from the behavioral Morris water maze (MWM) test and induced oxidative stress in the cortex and hippocampus as indicated by the significant increases in lipid peroxidation and nitric oxide (NO) levels and the significant decrease in reduced glutathione (GSH) levels. It also produced a significant increase in acetylcholinesterase (AChE) and tumor necrosis-alpha (TNF-ɑ) and a significant decrease in Na+,K + -ATPase. In addition, a significant increase in amino acid neurotransmitters occurred in the hippocampus, whereas a significant decrease was obtained in the cortex of STZ-induced AD rats. CNs ameliorated the behavioral, immunohistochemical and most of the neurochemical alterations induced by STZ in the hippocampus and cortex. It may be concluded that CNs might be considered as a promising therapeutic agent for the treatment of AD.


Subject(s)
Alzheimer Disease , Curcumin , Nanoparticles , Neurodegenerative Diseases , Acetylcholinesterase/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Disease Models, Animal , Humans , Male , Maze Learning , Oxidative Stress , Rats , Rats, Wistar , Streptozocin/toxicity
5.
Iran J Basic Med Sci ; 24(1): 85-91, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33643575

ABSTRACT

OBJECTIVES: The present study aims to investigate the pathological mechanisms mediating the effect of paradoxical sleep deprivation (PSD) for 48 hr on the spontaneous recurrent seizures (SRS) stage of the pilocarpine rat model of temporal lobe epilepsy. MATERIALS AND METHODS: This was carried out through assessment of amino acid neurotransmitter levels, the main oxidative stress parameters, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in the hippocampus. The experimental animals were divided into 4 groups: control, epileptic, PSD, and epileptic+PSD groups. RESULTS: Data indicated that PSD in epileptic rats induced a significant decrease in GSH levels. TNF-α increased significantly in the PSD group and decreased significantly in both epileptic rats and epileptic rats deprived of paradoxical sleep. PSD induced a significant increase in glutamine, glutamate, and aspartate and a significant decrease in GABA. In epileptic rats and epileptic rats deprived of PS, a significant increase in aspartate and a significant decrease in GABA and taurine were recorded. CONCLUSION: The present data suggest that exposure to PSD for 48 hr did not worsen the alterations produced in the present epileptic model. However, epileptic, PSD, epileptic + PSD groups showed a state of hyperexcitability and oxidative stress. PSD may increase the susceptibility of animals to the development of epilepsy.

6.
Cardiovasc Toxicol ; 21(6): 433-443, 2021 06.
Article in English | MEDLINE | ID: mdl-33548025

ABSTRACT

The cardiotoxicity of chemotherapeutic drugs as cisplatin has become a major issue in recent years. The present study investigates the efficacy of curcumin nanoparticles against the cardiotoxic effects of cisplatin by assessment of oxidative stress parameters, Na+,K+-ATPase, acetylcholinesterase (AchE) and tumor necrosis factor-alpha (TNF-α) in cardiac tissue in addition to serum lactate dehydrogenase (LDH). Rats were divided into three groups: control rats that received saline for 14 days; cisplatin-treated rats that received a single intraperitoneal (i.p.) injection of cisplatin (12 mg/kg) followed by a daily oral administration of saline (0.9%) for 14 days and rats treated with a single i.p. injection of cisplatin (12 mg/kg) followed by a daily oral administration of curcumin nanoparticles (50 mg/kg) for 14 days. Cisplatin resulted in a significant increase in lipid peroxidation, nitric oxide (NO), and TNF-α and a significant decrease in reduced glutathione (GSH) levels and Na+, K+- ATPase activity. Moreover, significant increases in cardiac AchE and serum lactate dehydrogenase activities were recorded. Treatment of cisplatin-injected animals with curcumin nanoparticles ameliorated all the alterations induced by cisplatin in the heart of rats. This suggests that curcumin nanoparticles can be used as an important therapeutic adjuvant in chemotherapeutic and other toxicities mediated by oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Curcumin/pharmacology , Heart Diseases/prevention & control , Myocytes, Cardiac/drug effects , Nanoparticles , Acetylcholinesterase/metabolism , Animals , Cisplatin , Disease Models, Animal , GPI-Linked Proteins/metabolism , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/pathology , Lipid Peroxidation/drug effects , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Basic Clin Neurosci ; 12(5): 681-692, 2021.
Article in English | MEDLINE | ID: mdl-35173922

ABSTRACT

INTRODUCTION: Caffeine and nicotine are the most widely consumed psychostimulants worldwide. Although the effects of each drug alone on the central nervous system have been studied extensively, the literature on the neurochemical and electrophysiological effects of their combined treatments is scarce. The present study investigated the cortical electrophysiological and neurochemical alterations induced by acute administration of caffeine and nicotine in rats. METHODS: The rats received caffeine and nicotine at a 1-hour interval between the two treatments. RESULTS: Caffeine and nicotine administration resulted in a significant decrease in the concentrations of cortical amino acid neurotransmitters, namely glutamate, aspartate, glycine, and taurine, while γ-aminobutyric acid (GABA) significantly increased. Increased cortical lipid peroxidation and reduced glutathione and nitric oxide levels and acetylcholinesterase and Na+/K+-ATPase activities were also observed. The Electroencephalogram (EEG) showed an increase in delta frequency power band, whereas theta, beta-1, and beta-2 decreased after caffeine and nicotine treatment. CONCLUSION: These findings suggest that caffeine and nicotine adversely exacerbate their stimulant effects manifested by the EEG changes mediated by increasing cholinergic transmission and disturbing the balance between the excitatory and inhibitory amino acids leading to oxidative stress.

8.
Biol Trace Elem Res ; 195(2): 579-590, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31444771

ABSTRACT

The present study aims to evaluate the efficacy of selenium (Se) alone or combined with carbamazepine (CBZ) against the adverse effects induced by the chemoconvulsant pentylenetetrazole (PTZ) in the cortex of adult male rats. Electrocorticogram (ECoG) and oxidative stress markers were implemented to evaluate the differences between treated and untreated animals. Animals were divided into five groups: control group that received i.p. saline injection, PTZ-treated group that received a single i.p. injection of PTZ (60 mg/kg) for induction of seizures followed by a daily i.p. injection of saline, Se-treated group that received an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration, CBZ-treated group that received orally CBZ (80 mg/kg/day) after PTZ administration, and combination (Se plus CBZ)-treated group that received an oral administration of CBZ (80 mg/kg/day) followed by an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration. Quantitative analyses of the ECoG indices and the neurochemical parameters revealed that Se and CBZ have mitigated the adverse effects induced by PTZ. The main results were decrease in the number of epileptic spikes, restoring the normal distribution of slow and fast ECoG frequencies and attenuation of most of the oxidative stress markers. However, there was an increase in lipid perioxidation marker in combined treatment of CBZ and Se. The electrophysiological and neurochemical data proved the potential of these techniques in evaluating the treatment's efficiency and suggest that supplementation of Se with antiepileptic drugs (AEDs) may be beneficial in ameliorating most of the alterations induced in the brain as a result of seizure insults and could be recommended as an adjunct therapy with AEDs.


Subject(s)
Anticonvulsants/therapeutic use , Carbamazepine/therapeutic use , Disease Models, Animal , Epilepsy/drug therapy , Selenium/therapeutic use , Animals , Anticonvulsants/administration & dosage , Carbamazepine/administration & dosage , Electrodes , Electroencephalography , Epilepsy/chemically induced , Epilepsy/surgery , Injections, Intraperitoneal , Male , Pentylenetetrazole , Rats , Rats, Wistar , Selenium/administration & dosage
9.
Toxicol Ind Health ; 34(12): 860-872, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30345898

ABSTRACT

The extensive use of mobile phones worldwide has raised increasing concerns about the effects of electromagnetic radiation (EMR) on the brain due to the proximity of the mobile phone to the head and the appearance of several adverse neurological effects after mobile phone use. It has been hypothesized that the EMR-induced neurological effects may be mediated by amino acid neurotransmitters. Thus, the present study investigated the effect of EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) on the concentrations of amino acid neurotransmitters (glutamic acid, aspartic acid, gamma aminobutyric acid, glycine, taurine, and the amide glutamine) in the hippocampus, striatum, and hypothalamus of juvenile and young adult rats. The juvenile and young adult animals were each divided into two groups: control rats and rats exposed to EMR 1 h daily for 1, 2, and 4 months. A subgroup of rats were exposed daily to EMR for 4 months and then left without exposure for 1 month to study the recovery from EMR exposure. Amino acid neurotransmitters were measured in the hippocampus, striatum, and hypothalamus using high-performance liquid chromatography. Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure.


Subject(s)
Amino Acids/radiation effects , Brain/radiation effects , Electromagnetic Radiation , Neurotransmitter Agents/radiation effects , Age Factors , Animals , Cell Phone , Chromatography, High Pressure Liquid , Electromagnetic Fields/adverse effects , Male , Rats , Rats, Wistar
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2120-2125, 2017 09.
Article in English | MEDLINE | ID: mdl-28572006

ABSTRACT

Febrile seizures (FS) are convulsions associated with high body temperature. It has a high incidence in children from the age of 6months to 5years and may have adverse consequences in adulthood. The experimental model of FS could be induced in animals via hyperthermia. The present study was designed to investigate persistent electroencephalographic (EEG), neurochemical and behavioral alterations in adult animals that had experienced complex FS at their immature age. EEG signals were obtained from the cortex of both FS and control normothermic groups of animals. A spectrophotometric assay was carried out to determine oxidative stress parameters (malondialdehyde, nitric oxide, reduced glutathione) and acetylcholinesterase activity in the cortex and hippocampus of FS and control animals. Behavioral assessment of seizure threshold and severity were investigated via a sub-convulsive dose of nicotine in adult animals. Alterations in the oxidant/antioxidant system and AChE activity were obtained in the cortex and hippocampus of FS animals in comparison to control animals. EEG spectral analysis displayed significant changes in all EEG frequency bands. A decrease in seizure latency and an increase in seizure severity were also observed. The present study provides evidence for long-lasting abnormalities in the cortex and hippocampus of adult animals subjected to complex FS at their developmental age, which may be correlated to the underlying mechanism of epileptogenesis and its related co-morbidities.


Subject(s)
Behavior, Animal , Electrocardiography , Hippocampus/physiopathology , Seizures, Febrile/physiopathology , Acetylcholinesterase/metabolism , Animals , Disease Models, Animal , GPI-Linked Proteins/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Male , Nicotine/adverse effects , Nicotine/pharmacology , Rats , Rats, Wistar , Seizures, Febrile/chemically induced , Seizures, Febrile/metabolism , Seizures, Febrile/pathology , Time Factors
11.
Electromagn Biol Med ; 36(1): 63-73, 2017.
Article in English | MEDLINE | ID: mdl-27400086

ABSTRACT

Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm2, SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.


Subject(s)
Catechin/analogs & derivatives , Electromagnetic Radiation , Hippocampus/metabolism , Neostriatum/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Tea/chemistry , Animals , Antioxidants/pharmacology , Catechin/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Male , Neostriatum/drug effects , Neostriatum/radiation effects , Rats , Rats, Wistar
12.
Gen Physiol Biophys ; 36(1): 99-108, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27901474

ABSTRACT

The aim of the present work was to investigate the neurochemical changes induced in the cerebellum of rat model of Parkinson's disease (PD). Rats were divided into two groups; control and rat model of PD induced by the intrastriatal injection of rotenone. As compared to control, a significant increase in the excitatory amino acid neurotransmitters; glutamate and aspartate together with a significant decrease in the inhibitory amino acids, GABA, glycine and taurine were observed in the cerebellum of rat model of PD. This was associated with a significant increase in lipid peroxidation, nitric oxide and tumor necrosis factor-α and a significant decrease in reduced glutathione. A significant decrease in acetylcholinesterase and a significant increase in Na+,K+-ATPase were recorded in the cerebellum of rat model of PD. In addition the cerebellar sections from rat model of PD showed marked necrosis of Purkinje cells, irregular damaged cells, cytoplasmic shrinkage, necrosis and perineuronal vacuolation. The present results indicate that the disturbance in the balance between the excitatory and inhibitory amino acids may have a role in the pathogenesis of PD. According to the present neurochemical and histopathological changes, the cerebellum should be taken into consideration during the treatment of PD.


Subject(s)
Cerebellum/metabolism , Cerebellum/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/pathology , Rotenone/pharmacology , Animals , Corpus Striatum/drug effects , Male , Nerve Tissue Proteins/metabolism , Rats , Rats, Wistar , Uncoupling Agents/pharmacology
13.
Life Sci ; 155: 174-9, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27210889

ABSTRACT

AIMS: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease affecting the population. The present study investigates the potential therapeutic effect of cerebrolysin (CBL), as a neurotrophic factor mimic, on the behavioral and biochemical alterations induced in 6-hydroxydopamine (6-OHDA) - lesioned rats as a model of PD. MAIN METHODS: The animals were divided into 3 experimental groups; control group, Parkinsonian model group through bilateral microinjection of 6-OHDA into substantia nigra (SN) and CBL-treated group which received a daily intraperitoneal administration of CBL (2.5ml/kg) initiated 24h after induction of Parkinsonism for 21days. KEY FINDINGS: Treatment of Parkinsonian animals with CBL succeeded in restoring the midbrain and striatum dopamine levels. In addition, it normalized the increased MDA and NO levels recorded in the Parkinsonian animals and replenished the decreased level of midbrain GSH. In addition to the recorded recovery of the biochemical parameters, there was a parallel improvement in the animal's behavioral aspects. SIGNIFICANCE: The findings of the present study provide evidence for the promising therapeutic effect of CBL in the present 6-OHDA rat model of PD through counteracting oxidative stress, replenishing dopamine content and enhancing behavioral outcomes.


Subject(s)
Amino Acids/therapeutic use , Disease Models, Animal , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Animals , Male , Rats , Rats, Wistar
14.
Cytotechnology ; 67(1): 145-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24337652

ABSTRACT

Bisphenol A (BPA) is an endocrine disrupting chemical used on a wide range in industry. Several studies reported that BPA may cause cardiovascular disorders in humans and animals. The present study aims to investigate the effect of BPA on the heart of adult male rats. The rats received a daily oral administration of BPA (25 mg/kg for 6 weeks and 10 mg/kg for 6 and 10 weeks). It was found that BPA at the two studied doses induced a significant increase in malondialdehyde, and a significant decrease in catalase after 6 weeks. Moreover, a significant decrease in reduced glutathione and acetylcholinesterase (AchE) activity was observed after treatment with the two doses of BPA throughout the studied time intervals. The two doses (25 and 10 mg/kg) resulted in a significant decrease in nitric oxide (NO) levels after 6 and 10 weeks, respectively. A significant increase in body weight gain occurred in all animals after BPA treatment. These results suggest that BPA has cardiotoxic effects which are mediated by the oxidative stress resulting from the overproduction of free radicals, the deficiency of NO and the inhibition of AchE leading to cholinergic activation. The obesity promoting effect of BPA may also participate in the observed cardiovascular disturbances.

15.
Epilepsy Behav ; 24(2): 199-206, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22575751

ABSTRACT

The present study aimed to investigate the effect of curcumin and Nigella sativa oil (NSO) on amino acid neurotransmitter alterations and the histological changes induced by pilocarpine in the hippocampus and cortex of rats. Epilepsy was induced by i.p. injection of pilocarpine, and the animals were left for 22 days to establish spontaneous recurrent seizures. They were then treated with curcumin, NSO or valproate for 21 days. Pilocarpine induced a significant increase in hippocampal aspartate and a significant decrease in glycine and taurine levels. In the cortex, a significant increase in aspartate, glutamate, GABA, glycine, and taurine levels was obtained after pilocarpine injection. Treatment of pilocarpinized rats with curcumin and valproate ameliorated most of the changes in amino acid concentrations and reduced the histopathological abnormalities induced by pilocarpine. N. sativa oil failed to improve the pilocarpine-induced abnormalities. This may explain the antiepileptic effect of curcumin and suggest its use as an anticonvulsant.


Subject(s)
Anticonvulsants , Convulsants , Curcumin/pharmacology , Epilepsy/chemically induced , Epilepsy/drug therapy , Nigella sativa/chemistry , Pilocarpine , Plant Oils/pharmacology , Valproic Acid/pharmacology , Amino Acids/metabolism , Animals , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Chromatography, High Pressure Liquid , Dansyl Compounds/chemistry , Epilepsy/pathology , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Neurotransmitter Agents/metabolism , Rats , Rats, Wistar
16.
Behav Brain Res ; 225(1): 39-46, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-21729722

ABSTRACT

The present study aims to investigate the effects of paradoxical sleep deprivation (PSD) on the waking EEG and amino acid neurotransmitters in the hippocampus and cortex of rats. Animals were deprived of paradoxical sleep for 72h by using the multiple platform method. The EEG power spectral analysis was carried out to assess the brain's electrophysiological changes due to sleep deprivation. The concentrations of amino acid neurotransmitters were assessed in the hippocampus and cortex using HPLC. Control data showed slight differences from normal animals in the delta, theta and alpha waves while an increase in the beta wave was obtained. After 24h of PSD, delta relative power increased and the rest of EEG wave's power decreased with respect to control. After 48h and 72h the spectral power analysis showed non-significant changes to control. The amino acid neurotransmitter analysis revealed a significant increase in cortical glutamate, glycine and taurine levels while in the hippocampus, glutamate, aspartate, glutamine and glycine levels increased significantly. Both the waking EEG and neurotransmitter analyses suggest that PSD induced neurochemical and electrophysiological changes that may affect brain proper functionality.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/metabolism , Hippocampus/metabolism , Neurochemistry , Sleep Deprivation , Amino Acids/metabolism , Animals , Cerebral Cortex/physiopathology , Electrodes, Implanted , Electroencephalography/methods , Hippocampus/physiopathology , Male , Rats , Rats, Wistar , Sleep Deprivation/metabolism , Sleep Deprivation/pathology , Sleep Deprivation/physiopathology , Spectrum Analysis , Weight Gain/physiology
17.
Transl Res ; 157(2): 100-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21256462

ABSTRACT

Several studies revealed the importance of paradoxical sleep as a homeostatic mechanism by which the brain can control oxidative stress. The aim of the present study is to investigate the effect of 72 h of paradoxical sleep deprivation on the oxidative stress markers and its insults on the activities of Na(+), K(+)-ATPase and acetylcholinesterase in the cortex and hippocampus of albino rat. Animals were subjected to paradoxical sleep deprivation for 72 h. At the end of the experiment, the rats were sacrificed, and catalase activity, levels of reduced glutathione, lipid peroxidation, and nitric oxide were assayed together with the activities of Na(+), K(+)-ATPase and acetylcholinesterase in the cortex and hippocampus. The present study revealed a significant increase in lipid peroxidation accompanied by a significant decrease in reduced glutathione in the cortex and hippocampus. Na(+), K(+)-ATPase decreased significantly in both areas. However, acetylcholinesterase showed a significant increase in the investigated brain regions. The present data showed that 72 h of paradoxical sleep deprivation induced oxidative stress in the cortex and hippocampus. It could be suggested that the inhibition of Na(+), K(+)-ATPase and the increased acetylcholinesterase activity may underlie memory impairment, increased brain excitability, and anxiety induced by paradoxical sleep deprivation.


Subject(s)
Acetylcholinesterase/metabolism , Cerebral Cortex/enzymology , Hippocampus/enzymology , Oxidative Stress , Sleep Deprivation , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...