Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 206: 108218, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029616

ABSTRACT

Plant biostimulants (PBs) are used globally to increase crop yield and productivity. PBs such as (Serendipita indica) or algal extracts stimulate and accelerate plant physiological processes. The physiological, ecological, and biochemical effects of (Serendipita indica) or algal extracts individually and in combination on basil plant (Ocimum basilicum L.) were investigated. Macroalgae samples were collected from Abu Qir, Alexandria, Egypt. The growth parameters, chlorophyll index, and biochemical composition of basil were analyzed at 90th day. The (Chlorella vulgaris) + (Serendipita indica) (MI + F) treatment increased chlorophyll index by 61.7% (SPAD) compared to control. (Chlorella vulgaris) had the highest growth hormones, including GA3 at 158.2 ppb, GA4 at 149.1 ppb, GA7 at 142.6 ppb, IAA at 136.6 ppb, and TC at 130.9 ppb, while (Ulva lactuca) had the lowest. The MI + F treatment yielded the highest essential oil and antioxidant values. Treatment with (Chlorella vulgaris) increased S. indica colonization by 66%. In contrast, Ulva lactuca and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. (Ulva lactuca) and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. Combined treatments had a greater influence on basil performance than the individual treatments. The evidence of synergistic/additive benefits to plants performance due to the interactive effects of (Chlorella vulgaris) and (Serendipita indica) had been studied. Complementary modes of action between (Chlorella vulgaris) and (Serendipita indica), through their components newly emerging properties on basil, may explain observed synergistic effects. This study explores the potential of microbial-algal interactions, particularly (Chlorella vulgaris) and (Serendipita indica), as innovative plant biostimulants. These interactions demonstrate positive effects on basil growth, offering promise for more effective microbial-based formulations to enhance crop productivity and sustainability in agriculture. These novelties will help create a second generation of PBs with integrated and complementary actions.


Subject(s)
Basidiomycota , Chlorella vulgaris , Edible Seaweeds , Ocimum basilicum , Ocimum , Ulva , Chlorophyll
SELECTION OF CITATIONS
SEARCH DETAIL
...