Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 7(6): 1746-1757, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38898944

ABSTRACT

T cells play a crucial role in antitumor immune responses and the clearance of infected cells. They identify their targets through the binding of T-cell receptors (TCRs) to peptide-major histocompatibility complex (pMHC) molecules present in cancer cells, infected cells, and antigen-presenting cells. This interaction is often weak, requiring multimeric pMHC molecules to enhance the avidity for identifying antigen-specific T cells. Current exchangeable pMHC-I tetramerization methods may overlook TCRs recognizing less stable yet immunogenic peptides. In vivo applications targeting antigen-specific T cells demand the genetic synthesis of a pMHC fusion for each unique peptide antigen, which poses a significant challenge. To address these challenges, we developed a sortase and click chemistry-mediated approach for generating stable pMHC molecules. Leveraging sortase technology, we introduced an azide click-handle near the N-terminus of ß2m, proximal to the MHC-peptide-binding groove. Simultaneously, the peptide was engineered with a multi glycine linker and a C-terminal alkyne click-handle. Azide-alkyne click reactions efficiently immobilized the peptide onto the MHC molecule, providing a versatile and efficient method for pMHC generation. The resulting peptide-clicked-MHC specifically binds to its cognate TCR and remains stable for over 3 months at 4 °C in the absence of any additional free peptide. The stability of the pMHC and its affinity to cognate TCRs are influenced by the linker's nature and length. Multi glycine linkers outperform poly(ethylene glycol) (PEG) linkers in this regard. This technology expands the toolkit for identifying and targeting antigen-specific T cells, enhancing our understanding of cancer-specific immune responses, and has the potential to streamline the development of personalized immunotherapies.

2.
Cell Rep ; 40(8): 111254, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001965

ABSTRACT

Allosteric activation and silencing of leukocyte ß2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXß2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH- and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXß2. This work highlights how intrinsically flexible pH- and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.


Subject(s)
Integrin alphaXbeta2 , Cations, Divalent , Integrin alphaXbeta2/chemistry , Integrin alphaXbeta2/metabolism , Ligands , Protein Binding , Protein Structure, Tertiary
3.
STAR Protoc ; 2(2): 100434, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33899016

ABSTRACT

Noninvasive immunoimaging holds great potential for studying and stratifying disease as well as therapeutic efficacy. Radiolabeled single-domain antibody fragments (i.e., nanobodies) are appealing probes for immune landscape profiling, as they display high stability, rapid targeting, and excellent specificity, while allowing extremely sensitive nuclear readouts. Here, we present a protocol for radiolabeling an anti-CD11b nanobody and studying its uptake in mice by a combination of positron emission tomography imaging, ex vivo gamma counting, and autoradiography. Our protocol is applicable to nanobodies against other antigens. For complete details on the use and execution of this protocol, please see Priem et al. (2020), Senders et al. (2019), or Rashidian et al. (2017).


Subject(s)
Immunologic Techniques/methods , Positron-Emission Tomography/methods , Single-Domain Antibodies , Animals , Histological Techniques , Mice , Molecular Imaging/methods , Organ Specificity , Single-Domain Antibodies/analysis , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism
4.
Biomolecules ; 11(5)2021 04 26.
Article in English | MEDLINE | ID: mdl-33925941

ABSTRACT

Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.


Subject(s)
Diagnostic Imaging/methods , Molecular Imaging/trends , Single-Domain Antibodies/pharmacology , Diagnostic Imaging/trends , Diagnostic Techniques and Procedures/trends , Humans , Molecular Imaging/methods , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radionuclide Imaging/methods , Radionuclide Imaging/trends , Single-Domain Antibodies/metabolism
5.
Nanotheranostics ; 5(1): 90-112, 2021.
Article in English | MEDLINE | ID: mdl-33391977

ABSTRACT

Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.


Subject(s)
Immunotherapy , Neoplasms/therapy , Humans , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...