Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1650, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238338

ABSTRACT

The study investigates the flow of a Newtonian Cu O nanofluid through a non-Darcy porous medium with radially varying viscosity, which is crucial for various industries such as pharmaceuticals, chemicals, nuclear, solar, and solar technologies. The peristaltic motion of the nanofluid is studied with thermal radiation and chemical reaction effects, and the viscosity varies with both radius and axial coordinates. The study assumes low Reynolds and long wavelength assumptions and uses the homotopy perturbation technique to obtain a semi-analytical solution of velocity, temperature, nanoparticle concentration, and skin friction. The results show that axial velocity increases with the increase of slip velocity and viscosity parameters, while wave amplitude and chemical reaction parameters increase while nanoparticle concentration decreases. High viscosity parameters allow fluid nanoparticles to gain more active energy and move more freely, which is the main idea behind crude oil refinement. This physical modeling is essential for physiological flows, such as stomach juice flow during endoscope insertion.

2.
Sci Rep ; 13(1): 11013, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37419939

ABSTRACT

To examine the peristaltic motion of a Newtonian fluid through an axisymmetric tube, many writers assume that viscosity is either a constant or a radius exponential function in Stokes' equations. In this study, viscosity is predicated on both the radius and the axial coordinate. The peristaltic transport of a Newtonian nanofluid with radially varying viscosity and entropy generation has been studied. Under the long-wavelength assumption, fluid flows through a porous media between co-axial tubes, with heat transfer. The inner tube is uniform, while the outer tube is flexible and has a sinusoidal wave travelling down its wall. The momentum equation is solved exactly, and the energy and nanoparticle concentration equations are solved using the homotopy perturbation technique. Furthermore, entropy generation is obtained. The numerical results for the behaviours of velocity, temperature, and nanoparticle concentration, as well as the Nusselt number and Sherwood number with physical problem parameters, are obtained and graphically depicted. It is discovered that as the values of the viscosity parameter and the Prandtl number rise, so does the value of the axial velocity. Temperature values decrease as the wave amplitude and radiation parameter increase. Furthermore, at high values of the dependent viscosity parameter, the fluid nanoparticle gains more active energy and can move more freely, which is the main idea behind crude oil refinement. This physical modelling is essential for some physiological flows, such as the flow of stomach juice during the insertion of an endoscope.


Subject(s)
Hot Temperature , Peristalsis , Viscosity , Entropy , Cohort Effect
SELECTION OF CITATIONS
SEARCH DETAIL
...