Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EXCLI J ; 22: 619-644, 2023.
Article in English | MEDLINE | ID: mdl-37662710

ABSTRACT

In recent years, zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) have become more prevalent in commercial and industrial products. However, questions have been raised regarding their potential harm to human health. Limited studies have been conducted on their intraperitoneal toxicity in rats, and their co-exposure effects remain uncertain. Therefore, this study aimed to investigate some biological responses induced by a single intraperitoneal injection of ZnO-NPs (200 mg/kg) and/or NiO-NPs (50 mg/kg) in rats over time intervals. Blood and organ samples were collected from 36 male rats for hematological, biochemical, oxidative stress, and histological analysis. Results showed that the administration of NPs reduced the body and organ weights as well as red blood cell (RBC) indices and altered white blood cell (WBC) and platelet (PLT) counts. The experimental groups exhibited elevated levels of aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine (CREA), urea, lipid profile, glucose (GLU), total protein (TP), albumin (ALB) and malondialdehyde (MDA), and decreased uric acid (UA), superoxide dismutase (SOD), and glutathione (GSH). Histological observations also revealed architectural damages in liver and kidneys. These alterations were time-dependent and varied in their degree of toxicity. Co-exposure of NPs initially lessened the damage but increased it afterwards compared to individual exposure. In conclusion, intraperitoneal injection of ZnO-NPs and/or NiO-NPs alters biological processes and induces oxidative stress in rats' liver and kidneys in a time-dependent manner, with NiO-NPs being more potent than ZnO-NPs. Furthermore, co-exposed NPs initially appeared to be antagonistic to one another while further aiming toward synergism.

2.
Biol Trace Elem Res ; 174(2): 392-401, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27178166

ABSTRACT

Waterpipe smoking is common in the Middle East populations and results in health problems. In this study, we investigated the effects of exposure of mice to waterpipe smoke on oxidative stress in lungs and liver and the effects of selenium administration before smoke exposure on the oxidative stress. Twenty-four mice were divided equally into four groups: (i) the control mice received no exposure or treatment; (ii) mice exposed to waterpipe smoke; (iii) mice received intraperitoneal injection of 0.59 µg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke; and (iv) mice received intraperitoneal injection of 1.78 µg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke. Mice were exposed to waterpipe smoke every other day for four times within 8 successive days. Malondialdehyde and nitric oxide levels were significantly higher in the lungs and liver, while the activities of superoxide dismutase, glutathione peroxidase-1, and catalase were significantly lower in the waterpipe smoke group when compared to control mice. Treating mice with 1.78 µg selenium/kg body weight significantly restored the normal levels of these parameters. Histological examinations of lungs and liver confirmed the protective actions of selenium against the effects of exposure to waterpipe smoke. In conclusion, exposure of mice to waterpipe smoke-induced oxidative stress in lungs and liver. Administration of low level of selenium, 1.78 µg selenium/kg body weight as sodium selenite, exerted protective effects against oxidative stress induced by exposure to waterpipe smoke.


Subject(s)
Liver/metabolism , Lung/metabolism , Oxidative Stress/drug effects , Selenium/pharmacology , Smoking/adverse effects , Smoking/metabolism , Animals , Dose-Response Relationship, Drug , Liver/pathology , Lung/pathology , Malondialdehyde/metabolism , Mice , Nitric Oxide/metabolism , Oxidoreductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...