Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(4): 2029-34, 2001 Feb 13.
Article in English | MEDLINE | ID: mdl-11172070

ABSTRACT

There are defined medullary, mesencephalic, hypothalamic, and thalamic functions in regulation of respiration, but knowledge of cortical control and the elements subserving the consciousness of breathlessness and air hunger is limited. In nine young adults, air hunger was produced acutely by CO(2) inhalation. Comparisons were made with inhalation of a N(2)/O(2) gas mixture with the same apparatus, and also with paced breathing, and with eyes closed rest. A network of activations in pons, midbrain (mesencephalic tegmentum, parabrachial nucleus, and periaqueductal gray), hypothalamus, limbic and paralimbic areas (amygdala and periamygdalar region) cingulate, parahippocampal and fusiform gyrus, and anterior insula were seen along with caudate nuclei and pulvinar activations. Strong deactivations were seen in dorsal cingulate, posterior cingulate, and prefrontal cortex. The striking response of limbic and paralimbic regions points to these structures having a singular role in the affective sequelae entrained by disturbance of basic respiratory control whereby a process of which we are normally unaware becomes a salient element of consciousness. These activations and deactivations include phylogenetically ancient areas of allocortex and transitional cortex that together with the amygdalar/periamygdalar region may subserve functions of emotional representation and regulation of breathing.


Subject(s)
Brain/pathology , Hypercapnia/pathology , Respiration , Adult , Air , Carbon Dioxide , Female , Humans , Hypercapnia/physiopathology , Male , Tomography, Emission-Computed
2.
Proc Natl Acad Sci U S A ; 98(4): 2035-40, 2001 Feb 13.
Article in English | MEDLINE | ID: mdl-11172071

ABSTRACT

Little is known about the physiological mechanisms subserving the experience of air hunger and the affective control of breathing in humans. Acute hunger for air after inhalation of CO(2) was studied in nine healthy volunteers with positron emission tomography. Subjective breathlessness was manipulated while end-tidal CO(2-) was held constant. Subjects experienced a significantly greater sense of air hunger breathing through a face mask than through a mouthpiece. The statistical contrast between the two conditions delineated a distributed network of primarily limbic/paralimbic brain regions, including multiple foci in dorsal anterior and middle cingulate gyrus, insula/claustrum, amygdala/periamygdala, lingual and middle temporal gyrus, hypothalamus, pulvinar, and midbrain. This pattern of activations was confirmed by a correlational analysis with breathlessness ratings. The commonality of regions of mesencephalon, diencephalon and limbic/paralimbic areas involved in primal emotions engendered by the basic vegetative systems including hunger for air, thirst, hunger, pain, micturition, and sleep, is discussed with particular reference to the cingulate gyrus. A theory that the phylogenetic origin of consciousness came from primal emotions engendered by immediate threat to the existence of the organism is discussed along with an alternative hypothesis by Edelman that primary awareness emerged with processes of ongoing perceptual categorization giving rise to a scene [Edelman, G. M. (1992) Bright Air, Brilliant Fire (Penguin, London)].


Subject(s)
Brain/physiopathology , Hypercapnia/physiopathology , Respiration , Adult , Air , Brain/metabolism , Brain/pathology , Carbon Dioxide/metabolism , Consciousness , Female , Humans , Hypercapnia/metabolism , Hypercapnia/pathology , Male , Tomography, Emission-Computed
3.
Proc Natl Acad Sci U S A ; 98(4): 2041-6, 2001 Feb 13.
Article in English | MEDLINE | ID: mdl-11172072

ABSTRACT

Recent neuroimaging and neurological data implicate cerebellum in nonmotor sensory, cognitive, vegetative, and affective functions. The present study assessed cerebellar responses when the urge to breathe is stimulated by inhaled CO(2). Ventilation changes follow arterial blood partial pressure CO(2) changes sensed by the medullary ventral respiratory group (VRG) and hypothalamus, entraining changes in midbrain, pons, thalamus, limbic, paralimbic, and insular regions. Nearly all these areas are known to connect anatomically with the cerebellum. Using positron emission tomography, we measured regional brain blood flow during acute CO(2)-induced breathlessness in humans. Separable physiological and subjective effects (air hunger) were assessed by comparisons with various respiratory control conditions. The conjoint physiological effects of hypercapnia and the consequent air hunger produced strong bilateral, near-midline activations of the cerebellum in anterior quadrangular, central, and lingula lobules, and in many areas of posterior quadrangular, tonsil, biventer, declive, and inferior semilunar lobules. The primal emotion of air hunger, dissociated from hypercapnia, activated midline regions of the central lobule. The distributed activity across the cerebellum is similar to that for thirst, hunger, and their satiation. Four possible interpretations of cerebellar function(s) here are that: it subserves implicit intentions to access air; it provides predictive internal models about the consequences of CO(2) inhalation; it modulates emotional responses; and that while some cerebellar regions monitor sensory acquisition in the VRG (CO(2) concentration), others influence VRG to adjust respiratory rate to optimize partial pressure CO(2), and others still monitor and optimize the acquisition of other sensory data in service of air hunger aroused vigilance.


Subject(s)
Cerebellum/blood supply , Hypercapnia/physiopathology , Respiration , Adult , Air , Cerebellum/pathology , Cerebrovascular Circulation , Female , Humans , Hypercapnia/blood , Male , Tomography, Emission-Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...