Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(6): e61483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952601

ABSTRACT

This research study explores of the effectiveness of a machine learning image classification model in the accurate identification of various types of brain tumors. The types of tumors under consideration in this study are gliomas, meningiomas, and pituitary tumors. These are some of the most common types of brain tumors and pose significant challenges in terms of accurate diagnosis and treatment. The machine learning model that is the focus of this study is built on the Google Teachable Machine platform (Alphabet Inc., Mountain View, CA). The Google Teachable Machine is a machine learning image classification platform that is built from Tensorflow, a popular open-source platform for machine learning. The Google Teachable Machine model was specifically evaluated for its ability to differentiate between normal brains and the aforementioned types of tumors in MRI images. MRI images are a common tool in the diagnosis of brain tumors, but the challenge lies in the accurate classification of the tumors. This is where the machine learning model comes into play. The model is trained to recognize patterns in the MRI images that correspond to the different types of tumors. The performance of the machine learning model was assessed using several metrics. These include precision, recall, and F1 score. These metrics were generated from a confusion matrix analysis and performance graphs. A confusion matrix is a table that is often used to describe the performance of a classification model. Precision is a measure of the model's ability to correctly identify positive instances among all instances it identified as positive. Recall, on the other hand, measures the model's ability to correctly identify positive instances among all actual positive instances. The F1 score is a measure that combines precision and recall providing a single metric for model performance. The results of the study were promising. The Google Teachable Machine model demonstrated high performance, with accuracy, precision, recall, and F1 scores ranging between 0.84 and 1.00. This suggests that the model is highly effective in accurately classifying the different types of brain tumors. This study provides insights into the potential of machine learning models in the accurate classification of brain tumors. The findings of this study lay the groundwork for further research in this area and have implications for the diagnosis and treatment of brain tumors. The study also highlights the potential of machine learning in enhancing the field of medical imaging and diagnosis. With the increasing complexity and volume of medical data, machine learning models like the one evaluated in this study could play a crucial role in improving the accuracy and efficiency of diagnoses. Furthermore, the study underscores the importance of continued research and development in this field to further refine these models and overcome any potential limitations or challenges. Overall, the study contributes to the field of medical imaging and machine learning and sets the stage for future research and advancements in this area.

2.
J Imaging ; 9(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37888322

ABSTRACT

(1) Background: Colon polyps are common protrusions in the colon's lumen, with potential risks of developing colorectal cancer. Early detection and intervention of these polyps are vital for reducing colorectal cancer incidence and mortality rates. This research aims to evaluate and compare the performance of three machine learning image classification models' performance in detecting and classifying colon polyps. (2) Methods: The performance of three machine learning image classification models, Google Teachable Machine (GTM), Roboflow3 (RF3), and You Only Look Once version 8 (YOLOv8n), in the detection and classification of colon polyps was evaluated using the testing split for each model. The external validity of the test was analyzed using 90 images that were not used to test, train, or validate the model. The study used a dataset of colonoscopy images of normal colon, polyps, and resected polyps. The study assessed the models' ability to correctly classify the images into their respective classes using precision, recall, and F1 score generated from confusion matrix analysis and performance graphs. (3) Results: All three models successfully distinguished between normal colon, polyps, and resected polyps in colonoscopy images. GTM achieved the highest accuracies: 0.99, with consistent precision, recall, and F1 scores of 1.00 for the 'normal' class, 0.97-1.00 for 'polyps', and 0.97-1.00 for 'resected polyps'. While GTM exclusively classified images into these three categories, both YOLOv8n and RF3 were able to detect and specify the location of normal colonic tissue, polyps, and resected polyps, with YOLOv8n and RF3 achieving overall accuracies of 0.84 and 0.87, respectively. (4) Conclusions: Machine learning, particularly models like GTM, shows promising results in ensuring comprehensive detection of polyps during colonoscopies.

3.
Cureus ; 15(9): e46027, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37900534

ABSTRACT

Oculomotor nerve (CN III) palsy (ONP) has multiple etiologies, with aneurysms and ischemic injury being the two leading causes. The presentations of these conditions differ, as aneurysms commonly manifest with pupillary involvement, while ischemic-related ONP often leads to a pupil-sparing presentation. We present a 63-year-old African American male with a history of sickle cell trait, ocular sickle cell disease, and untreated hypertension that develops "down and out" left eye with a mid-dilated pupil unresponsive to light. However, the patient developed severe left upper tooth pain after the onset of the eye pain, which progressed to ONP. The patient's dental and radiographic evaluation did not indicate any obvious source for his tooth pain. Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) of the head revealed a 7-mm saccular aneurysm with a 2-mm neck arising from the left posterior communicating artery (PCOM) aneurysm, and neurovascular surgical intervention was initiated. This case highlights the potential of referred tooth pain as an early symptom in patients with PCOM aneurysm, which physicians should be vigilant about and consider as a potential indicator of the condition. Therefore, collaboration between different specialties, including ophthalmology, neurology, neurosurgery, and dental care, is necessary to formulate a comprehensive treatment plan that effectively addresses the patient's specific needs and challenges.

SELECTION OF CITATIONS
SEARCH DETAIL
...