Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 60(17): 12883-12892, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34492771

ABSTRACT

Distinct facets of an electrocatalyst can promote polysulfide (Li2Sn (n = 4, 6, 8) and Li2Sm (m = 1, 2)) redox kinetics in lithium-sulfur (Li-S) battery chemistry. Herein, we report that the (100) facet of tungsten disulfide (e-WS2) generated in situ by electrochemical pulverization exhibits onset potentials of 2.52 and 2.32 V vs Li/Li+, respectively, for the reduction of polysulfides Li2Sn and Li2Sm, which is unprecedented till date. In a comparable study, bulk WS2 was synthesized ex situ. The transmission electron microscopy (TEM) analysis reveals that the (100) facet was dominant in e-WS2, while the (002) facet was pronounced in bulk WS2. The density functional theory (DFT) analysis indicates that the (100) facet displays metallic-like behavior, which is highly desired for enhanced polysulfide redox kinetics. We believe that the e-WS2 produced can potentially be an excellent electrocatalyst for other applications such as hydrogen evolution reaction (HER), photocatalysis, and CO2 reduction.

4.
ACS Omega ; 5(20): 11721-11729, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32478263

ABSTRACT

An economical and binder-free electrode was fabricated by impregnation of sub-5 nm MoS2 nanodots (MoS2 NDs) onto a three-dimensional (3D) nickel substrate using the facile dip-coating method. The MoS2 NDs were successfully synthesized by controlled bath sonication of highly crystalline MoS2 nanosheets. The as-fabricated high-surface area electrode demonstrated promising electrochemical properties. It was observed that the as-synthesized NDs outperformed the layered MoS2 peers as the electrode for supercapacitors. MoS2 NDs exhibited an excellent specific capacitance (C sp) of 395 F/g at a current load of 1.5 A/g in a three-electrode configuration. In addition, the fabricated symmetric supercapacitor demonstrated a C sp value of 122 F/g at 1 A/g and a cyclic performance of 86% over 1000 cycles with a gravimetric power and energy density of 10,000 W/kg and 22 W h/kg, respectively. Owing to its simple and efficient fabrication and high surface area, such 3D electrodes show high promise for various energy storage devices.

5.
ACS Appl Mater Interfaces ; 11(39): 35729-35737, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31483601

ABSTRACT

Here, we report that in situ MoS2 and S cathodes (MGC) prepared by simple decomposition of (NH4)2MoS4 facilitate direct formation of Li2S and suppress the long-term problem associated with polysulphide shuttling in Li-S batteries. For comparison, we prepared ex situ MoS2 and S cathodes (EMS) with a similar S/MoS2 mole ratio to that of in situ-prepared cathodes. Discharge capacity of EMS cathodes dropped by 80% after first few cycles, while assembled MGC cells demonstrated an initial discharge capacity of 1649 mA h/g, achieving close to theoretical capacity of elemental sulfur (1675 mA h/g) at C/3 and a reversible capacity of 1500 mA h/g was obtained in further cycles. The MoS2 nanostructure evolution after initial discharge helped in extending the cycle life of assembled cells even at a high C rate. Density functional theory (DFT) calculation was performed to understand the structural stability of intermediate MoS3 and possible electrochemical reactions pertaining to Li+ insertion in MoS2 and S. Based on DFT studies, MoS3 undergoes stoichiometric decomposition to stable MoS2 and S. Furthermore, electrochemical analysis confirmed the redox activity of MoS2 and S at 1.3 and 1.8 V against Li/Li+, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...