Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745362

ABSTRACT

Overexpression of the longevity gene Klotho prolongs, while its knockout shortens lifespan and impairs cognition via altered fibroblast growth factor signaling that perturbs myelination and synapse formation; however, comprehensive analysis of Klotho's knockout consequences on mammalian brain transcriptomics is lacking. Here, we report the altered levels under Klotho knockout of 1059 long RNAs, 27 microRNAs (miRs) and 6 tRNA fragments (tRFs), reflecting effects upon aging and cognition. Perturbed transcripts included key neuronal and glial pathway regulators that are notably changed in murine models of aging and Alzheimer's Disease (AD) and in corresponding human post-mortem brain tissue. To seek cell type distributions of the affected short RNAs, we isolated and FACS-sorted neurons and microglia from live human brain tissue, yielding detailed cell type-specific short RNA-seq datasets. Together, our findings revealed multiple Klotho deficiency-perturbed aging- and neurodegeneration-related long and short RNA transcripts in both neurons and glia from murine and human brain.

2.
Sci Rep ; 13(1): 4211, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918615

ABSTRACT

The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.


Subject(s)
Bone and Bones , Glucuronidase , Klotho Proteins , Animals , Mice , Bone and Bones/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism , Kidney/metabolism , Mice, Knockout , Minerals/metabolism , Protein Isoforms/metabolism , Klotho Proteins/metabolism
3.
Ageing Res Rev ; 82: 101766, 2022 12.
Article in English | MEDLINE | ID: mdl-36283617

ABSTRACT

INTRODUCTION: The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE: The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS: A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS: Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS: The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.


Subject(s)
Aging, Premature , Glucuronidase , Humans , Mice , Animals , Klotho Proteins , Aging/metabolism , Longevity/genetics , Biomarkers
4.
Cancers (Basel) ; 13(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34944918

ABSTRACT

Klotho is an anti-aging transmembrane protein, which can be shed and can function as a hormone. Accumulating data indicate that klotho is a tumor suppressor in a wide array of malignancies, and designate the subdomain KL1 as the active region of the protein towards this activity. We aimed to study the role of klotho as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Bioinformatics analyses of The Cancer Genome Atlas (TCGA) datasets revealed a correlation between the survival of PDAC patients, levels of klotho expression, and DNA methylation, and demonstrated a unique hypermethylation pattern of klotho in pancreatic tumors. The in vivo effects of klotho and KL1 were examined using three mouse models. Employing a novel genetic model, combining pancreatic klotho knockdown with a mutation in Kras, the lack of klotho contributed to PDAC generation and decreased mousece survival. In a xenograft model, administration of viral particles carrying sKL, a spliced klotho isoform containing the KL1 domain, inhibited pancreatic tumors. Lastly, treatment with soluble sKL prolonged survival of Pdx1-Cre; KrasG12D/+;Trp53R172H/+ (KPC) mice, a model known to recapitulate human PDAC. In conclusion, this study provides evidence that klotho is a tumor suppressor in PDAC. Furthermore, these data suggest that the levels of klotho expression and DNA methylation could have prognostic value in PDAC patients, and that administration of exogenous sKL may serve as a novel therapeutic strategy to treat PDAC.

5.
Hum Mol Genet ; 30(1): 103-118, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33555315

ABSTRACT

Oligodendrocytes exist in a heterogenous state and are implicated in multiple neuropsychiatric diseases including dementia. Cortical oligodendrocytes are a glial population uniquely positioned to play a key role in neurodegeneration by synchronizing circuit connectivity but molecular pathways specific to this role are lacking. We utilized oligodendrocyte-specific translating ribosome affinity purification and RNA-seq (TRAP-seq) to transcriptionally profile adult mature oligodendrocytes from different regions of the central nervous system. Weighted gene co-expression network analysis reveals distinct region-specific gene networks. Two of these mature myelinating oligodendrocyte gene networks uniquely define cortical oligodendrocytes and differentially regulate cortical myelination (M8) and synaptic signaling (M4). These two cortical oligodendrocyte gene networks are enriched for genes associated with dementia including MAPT and include multiple gene targets of the regulatory microRNA, miR-142-3p. Using a combination of TRAP-qPCR, miR-142-3p overexpression in vitro, and miR-142-null mice, we show that miR-142-3p negatively regulates cortical myelination. In rTg4510 tau-overexpressing mice, cortical myelination is compromised, and tau-mediated neurodegeneration is associated with gene co-expression networks that recapitulate both the M8 and M4 cortical oligodendrocyte gene networks identified from normal cortex. We further demonstrate overlapping gene networks in mature oligodendrocytes present in normal cortex, rTg4510 and miR-142-null mice, and existing datasets from human tauopathies to provide evidence for a critical role of miR-142-3p-regulated cortical myelination and oligodendrocyte-mediated synaptic signaling in neurodegeneration.


Subject(s)
MicroRNAs/genetics , Tauopathies/genetics , tau Proteins/genetics , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Cerebellar Cortex/metabolism , Cerebellar Cortex/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Humans , Mice , Nerve Fibers, Myelinated/metabolism , Nerve Fibers, Myelinated/pathology , Oligodendroglia/metabolism , RNA-Seq , Tauopathies/metabolism , Tauopathies/pathology
6.
Neuropsychopharmacology ; 46(4): 721-730, 2021 03.
Article in English | MEDLINE | ID: mdl-33096543

ABSTRACT

This study examined the klotho (KL) longevity gene polymorphism rs9315202 and psychopathology, including posttraumatic stress disorder (PTSD), depression, and alcohol-use disorders, in association with advanced epigenetic age in three postmortem cortical tissue regions: dorsolateral and ventromedial prefrontal cortices and motor cortex. Using data from the VA National PTSD Brain Bank (n = 117), we found that rs9315202 interacted with PTSD to predict advanced epigenetic age in motor cortex among the subset of relatively older (>=45 years), white non-Hispanic decedents (corrected p = 0.014, n = 42). An evaluation of 211 additional common KL variants revealed that only variants in linkage disequilibrium with rs9315202 showed similarly high levels of significance. Alcohol abuse was nominally associated with advanced epigenetic age in motor cortex (p = 0.039, n = 114). The rs9315202 SNP interacted with PTSD to predict decreased KL expression via DNAm age residuals in motor cortex among older white non-Hispanics decedents (indirect ß = -0.198, p = 0.027). Finally, in dual-luciferase enhancer reporter system experiments, we found that inserting the minor allele of rs9315202 in a human kidney cell line HK-2 genomic DNA resulted in a change in KL transcriptional activities, likely operating via long noncoding RNA in this region. This was the first study to examine multiple forms of psychopathology in association with advanced DNA methylation age across several brain regions, to extend work concerning the association between rs9315202 and advanced epigenetic to brain tissue, and to identify the effects of rs9315202 on KL gene expression. KL augmentation holds promise as a therapeutic intervention to slow the pace of cellular aging, disease onset, and neuropathology, particularly in older, stressed populations.


Subject(s)
Glucuronidase/genetics , Stress Disorders, Post-Traumatic , Aged , Alleles , DNA Methylation , Epigenesis, Genetic , Epigenomics , Humans , Klotho Proteins , Middle Aged , Stress Disorders, Post-Traumatic/genetics
7.
Psychoneuroendocrinology ; 117: 104656, 2020 07.
Article in English | MEDLINE | ID: mdl-32438247

ABSTRACT

BACKGROUND: Longevity gene klotho (KL) is associated with age-related phenotypes including lifespan, cardiometabolic disorders, cognition, and brain morphology, in part, by conferring protection against inflammation. We hypothesized that the KL/inflammation association might be altered in the presence of psychiatric stress and operate via epigenetic pathways. We examined KL polymorphisms, and their interaction with posttraumatic stress disorder (PTSD) symptoms, in association with KL DNA methylation in blood. We further examined KL DNA methylation as a predictor of longitudinal changes in a peripheral biomarker of inflammation (C-reactive protein; CRP). METHODS: The sample comprised 309 white non-Hispanic military veterans (93.5 % male; mean age: 32 years, range: 19-65; 30 % PTSD per structured diagnostic interview); 111 were reassessed approximately two years later. RESULTS: Analyses revealed a methylation quantitative trait locus at rs9527025 (C370S, previously implicated in numerous studies of aging) in association with a Cytosine-phosphate-Guanine site (cg00129557; B = -.65, p = 1.29 X 10-20), located within a DNase hypersensitivity site in the body of KL. There was also a rs9527025 x PTSD severity interaction (B = .004, p = .035) on methylation at this locus such that the minor allele was associated with reduced cg00129557 methylation in individuals with few or no PTSD symptoms while this effect was attenuated in those with elevated levels of PTSD. Path models revealed that methylation at cg00129557 was inversely associated with CRP over time (B = -.14, p = .005), controlling for baseline CRP. There was also an indirect effect of rs9527025 X PTSD on subsequent CRP via cg00129557 methylation (indirect B = -.002, p = .033). CONCLUSIONS: Results contribute to our understanding of the epigenetic correlates of inflammation in PTSD and suggest that KL methylation may be a mechanism by which KL genotype confers risk vs. resilience to accelerated aging in those experiencing traumatic stress.


Subject(s)
Aging, Premature , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Glucuronidase/physiology , Inflammation , Longevity/genetics , Stress Disorders, Post-Traumatic , Adult , Aged , Aging, Premature/blood , Aging, Premature/etiology , Aging, Premature/genetics , Biomarkers/blood , C-Reactive Protein , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Glucuronidase/genetics , Humans , Inflammation/blood , Inflammation/etiology , Inflammation/genetics , Klotho Proteins , Longitudinal Studies , Male , Middle Aged , Stress Disorders, Post-Traumatic/complications , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/physiopathology , Veterans , Young Adult
8.
FASEB J ; 34(6): 7234-7246, 2020 06.
Article in English | MEDLINE | ID: mdl-32347987

ABSTRACT

There is an unmet need for treatments for diseases associated with aging. The antiaging, life-extending, and cognition-enhancing protein Klotho is neuroprotective due to its anti-inflammatory, antioxidative, and pro-myelinating effects. In addition, Klotho is also a tumor suppressor and has beneficial roles in multiple organs. Klotho is downregulated as part of the aging process. Thus, upregulating Klotho in the brain may lead to novel therapeutics to people suffering or at risk for neurodegenerative diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, and demyelinating diseases such as multiple sclerosis. We attempted to upregulate Klotho for its beneficial effects in the brain and elsewhere. Here, we describe a method to specifically activate Klotho gene expression. To accomplish this task, we designed zinc finger proteins (ZFPs) targeting within -300 bps of the human Klotho promoter. We designed the ZPF constructs either de novo from modular building blocks, or modified sequences from the natural endogenous Egr1 transcription factor backbone structure. Egr1 is known to upregulate Klotho expression. We tested the transcriptional activation effects of these ZFPs in a dual luciferase coincidence reporter system under the control of 4-kb promoter of human Klotho in stable HEK293 cells and in HK-2 cells that express Klotho protein endogenously. We found that the best ZFPs are the de novo designed ones targeting -250 bps of Klotho promoter and one of the Egr1-binding sites. We further enhanced Klotho's activation using p65-Rta transcriptional activation domains in addition to VP64. These upregulation approaches could be useful for studying Klotho's protective effects and designing Klotho boosting therapeutics for future in vivo experiments.


Subject(s)
Early Growth Response Protein 1/genetics , Glucuronidase/genetics , Promoter Regions, Genetic/genetics , Zinc Fingers/genetics , Aging/genetics , Binding Sites/genetics , Brain/metabolism , Cell Line , Cognition/physiology , Gene Expression/genetics , HEK293 Cells , Humans , Klotho Proteins , Luciferases/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transcriptional Activation/genetics , Up-Regulation/genetics
9.
PLoS One ; 15(1): e0226382, 2020.
Article in English | MEDLINE | ID: mdl-31929539

ABSTRACT

Klotho is an age-extending, cognition-enhancing protein found to be down-regulated in aged mammals when age-related diseases start to appear. Low levels of Klotho occur in neurodegenerative diseases, kidney disease and many cancers. Many normal and pathologic processes involve the proteolytic shedding of membrane proteins. Transmembrane (TM) Klotho contains two homologous domains, KL1 and KL2 with homology to glycosidases. After shedding by ADAM 10 and 17, a shed Klotho isoform is released into serum and urine by the kidney, and into the CSF by the choroid plexus. We previously reported that human Klotho contains two major cleavage sites. However, the exact cleavage site responsible for the cleavage between the KL1 and KL2 domains remains unknown for the human Klotho, and both sites are unknown for mouse Klotho. In this study, we aimed to identify the cleavage sites leading to the shed forms of human and mouse Klotho. Mutations in the region close to the TM domain of mouse Klotho result in the reduced shedding of the 130 kD (KL1+KL2) and 70 kD (KL1) fragments, suggesting that the cleavage site lies within the mutated region. We further identified the cleavage sites responsible for the cleavage between KL1 and KL2 of human and mouse Klotho. Moreover, mutated Klotho proteins have similar subcellular localization patterns as wild type Klotho. Finally, in an FGF23 functional assay, all Klotho mutants with a nine amino acid deletion can also function as an FGFR1 co-receptor for FGF23 signaling, however, the signaling activity was greatly reduced. The study provides new and important information on Klotho shedding, and paves the way for studies aimed to distinguish between the distinct roles of the various isoforms of Klotho.


Subject(s)
Glucuronidase/metabolism , ADAM10 Protein/metabolism , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Glucuronidase/chemistry , Glucuronidase/genetics , HEK293 Cells , Humans , Klotho Proteins , Mice , Microscopy, Fluorescence , Mutagenesis , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Sequence Alignment , Signal Transduction
10.
FASEB J ; 34(2): 2087-2104, 2020 02.
Article in English | MEDLINE | ID: mdl-31907991

ABSTRACT

Proteinuria is associated with renal function decline and cardiovascular mortality. This association may be attributed in part to alterations of Klotho expression induced by albuminuria, yet the underlying mechanisms are unclear. The presence of albumin decreased Klotho expression in the POD-ATTAC mouse model of proteinuric kidney disease as well as in kidney epithelial cell lines. This downregulation was related to both decreased Klotho transcription and diminished protein half-life, whereas cleavage by ADAM proteases was not modified. The regulation was albumin specific since it was neither observed in the analbuminemic Col4α3-/- Alport mice nor induced by exposure of kidney epithelial cells to purified immunoglobulins. Albumin induced features of ER stress in renal tubular cells with ATF3/ATF4 activation. ATF3 and ATF4 induction downregulated Klotho through altered transcription mediated by their binding on the Klotho promoter. Inhibiting ER stress with 4-PBA decreased the effect of albumin on Klotho protein levels without altering mRNA levels, thus mainly abrogating the increased protein degradation. Taken together, albuminuria decreases Klotho expression through increased protein degradation and decreased transcription mediated by ER stress induction. This implies that modulating ER stress may improve proteinuria-induced alterations of Klotho expression, and hence renal and extrarenal complications associated with Klotho loss.


Subject(s)
Activating Transcription Factor 3/metabolism , Albuminuria/metabolism , Down-Regulation , Endoplasmic Reticulum Stress , Glucuronidase/biosynthesis , Kidney Tubules/metabolism , Transcription, Genetic , Activating Transcription Factor 3/genetics , Albuminuria/genetics , Albuminuria/pathology , Animals , Autoantigens/genetics , Autoantigens/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Glucuronidase/genetics , Humans , Kidney Tubules/pathology , Klotho Proteins , Mice , Mice, Knockout
11.
J Mol Neurosci ; 69(2): 264-285, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31250273

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. ALS neuropathology is associated with increased oxidative stress, excitotoxicity, and inflammation. We and others reported that the anti-aging and cognition-enhancing protein Klotho is a neuroprotective, antioxidative, anti-inflammatory, and promyelinating protein. In mice, its absence leads to an extremely shortened life span and to multiple phenotypes resembling human aging, including motor and hippocampal neurodegeneration and cognitive impairment. In contrast, its overexpression extends life span, enhances cognition, and confers resistance against oxidative stress; it also reduces premature mortality and cognitive and behavioral abnormalities in an animal model for Alzheimer's disease (AD). These pleiotropic beneficial properties of Klotho suggest that Klotho could be a potent therapeutic target for preventing neurodegeneration in ALS. Klotho overexpression in the SOD1 mouse model of ALS resulted in delayed onset and progression of the disease and extended survival that was more prominent in females than in males. Klotho reduced the expression of neuroinflammatory markers and prevented neuronal loss with the more profound effect in the spinal cord than in the motor cortex. The effect of Klotho was accompanied by reduced expression of proinflammatory cytokines and enhanced the expression of antioxidative and promyelinating factors in the motor cortex and spinal cord of Klotho × SOD1 compared to SOD1 mice. Our study provides evidence that increased levels of Klotho alleviate ALS-associated pathology in the SOD1 mouse model and may serve as a basis for developing Klotho-based therapeutic strategies for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Glucuronidase/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Female , Glucuronidase/metabolism , Klotho Proteins , Longevity/genetics , Male , Mice , Mice, Inbred C57BL , Motor Cortex/cytology , Motor Cortex/metabolism , Neuroglia/metabolism , Neurons/metabolism
12.
PLoS One ; 14(3): e0213321, 2019.
Article in English | MEDLINE | ID: mdl-30830941

ABSTRACT

BACKGROUND: Fibroblast growth factor 23 is an emerging vascular biomarker, recently associated with cerebral small vessel disease and poor cognition in patients on dialysis. It also interacts with klotho, an anti-aging and cognition enhancing protein. OBJECTIVE: To determine if circulating Fibroblast growth factor 23 (FGF23) is associated with new-onset cognitive outcomes in a community-based cohort of cognitively healthy adults with long-term follow-up. METHODS: We measured serum FGF23 levels in 1537 [53% women, mean age 68.7 (SD 5.7)] dementia-free Framingham Offspring participants at their 7th quadrennial examination (1998-2001), and followed these participants for the development of clinical all-cause dementia and Alzheimer's disease (AD). Secondary outcomes included MRI-based structural brain measures, and neurocognitive test performance at exam 7. RESULTS: During a median (Q1, Q3) 12-year (7.0, 13.3) follow up, 122 (7.9%) participants developed dementia, of whom 91 (5.9%) had AD. Proportional-hazards regression analysis, adjusted for age, sex, education, systolic blood pressure, antihypertensive medication, prevalent cardiovascular disease, diabetes mellitus, smoking status and apoE ε4 carrier status, revealed that higher serum FGF23 levels were associated with an increased risk of incident dementia and AD (Hazard ratio [HR] per 1 standard deviation increment in inverse transformed FGF23 level 1.25, 95% CI 1.02-1.53, and 1.32, 95% CI 1.04-1.69, respectively). There was no significant interaction according to presence/absence of significant renal impairment (eGFR <30 versus ≥30ml/min) and risk of dementia (based on 1537; p = 0.97). CONCLUSIONS: Higher circulating FGF23 is associated with an increased risk of dementia, suggesting that FGF23-related biological pathways may play a role in the development of dementia.


Subject(s)
Alzheimer Disease/diagnosis , Biomarkers/blood , Dementia/diagnosis , Fibroblast Growth Factors/blood , Aged , Alzheimer Disease/blood , Alzheimer Disease/epidemiology , Blood Pressure , Dementia/blood , Dementia/epidemiology , Female , Fibroblast Growth Factor-23 , Humans , Incidence , Longitudinal Studies , Male , Prospective Studies , Risk Factors , United States/epidemiology
13.
J Alzheimers Dis ; 67(3): 1089-1106, 2019.
Article in English | MEDLINE | ID: mdl-30776010

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of neurotoxic amyloid-ß (Aß) peptides consisting of 39-43 amino acids, proteolytically derived fragments of the amyloid-ß protein precursor (AßPP), and the accumulation of the hyperphosphorylated microtubule-associated protein tau. Inhibiting Aß production may reduce neurodegeneration and cognitive dysfunction associated with AD. We have previously used an AßPP-firefly luciferase enzyme complementation assay to conduct a high throughput screen of a compound library for inhibitors of AßPP dimerization, and identified a compound that reduces Aß levels. In the present study, we have identified an analog, compound Y10, which also reduced Aß. Initial kinase profiling assays identified the receptor tyrosine kinase cKit as a putative Y10 target. To elucidate the precise mechanism involved, AßPP phosphorylation was examined by IP-western blotting. We found that Y10 inhibits cKit phosphorylation and increases AßPP phosphorylation mainly on tyrosine residue Y743, according to AßPP751 numbering. A known cKit inhibitor and siRNA specific to cKit were also found to increase AßPP phosphorylation and lower Aß levels. We also investigated a cKit downstream signaling molecule, the Shp2 phosphatase, and found that known Shp2 inhibitors and siRNA specific to Shp2 also increase AßPP phosphorylation, suggesting that the cKit signaling pathway is also involved in AßPP phosphorylation and Aß production. We further found that inhibitors of both cKit and Shp2 enhance AßPP surface localization. Thus, regulation of AßPP phosphorylation by small molecules should be considered as a novel therapeutic intervention for AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/drug effects , Amyloid beta-Peptides/drug effects , Amyloid beta-Protein Precursor/drug effects , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans
14.
J Neuroimmune Pharmacol ; 13(2): 254-264, 2018 06.
Article in English | MEDLINE | ID: mdl-29516269

ABSTRACT

We studied the effect of two rare mutations (rs144662445 and rs149979685) in the A-kinase anchoring protein 9 (AKAP9) gene, previously associated with Alzheimer disease (AD) in African Americans (AA), on post-translational modifications of AD-related pathogenic molecules, amyloid precursor protein (APP) and microtubule-associated protein Tau using lymphoblastoid cell lines (LCLs) from 11 AA subjects with at least one AKAP9 mutation and 17 AA subjects lacking these mutations. LCLs were transduced by viral vectors expressing causative AD mutations in APP or human full-length wild type Tau. Cell lysates were analyzed for total APP, Aß40, and total and T181 phospho-Tau (pTau). AKAP9 mutations had no effect on Aß40/APP, but significantly increased pTau/Tau ratio in LCLs treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A. Proteomic analysis of Tau interactome revealed enrichment of RNA binding proteins and decrease of proteasomal molecules in rolipram-treated cells with AKAP9 mutations. This study shows the impact of rare functional AKAP9 mutations on Tau, a central mechanism of AD pathogenesis, in LCLs derived from AD and control subjects.


Subject(s)
A Kinase Anchor Proteins/genetics , Alzheimer Disease/genetics , Cytoskeletal Proteins/genetics , Protein Processing, Post-Translational/genetics , tau Proteins/metabolism , Black or African American , Aged , Alzheimer Disease/metabolism , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Mutation, Missense , Phosphorylation
15.
Geroscience ; 40(1): 31-47, 2018 02.
Article in English | MEDLINE | ID: mdl-29357021

ABSTRACT

Mammalian aging is associated with decline in cognitive functions. Studies searching for a cause of cognitive aging initially focused on neuronal loss but quantitative investigations of rat, monkey, and human brain using stereology demonstrated that in normal aging, unlike in neurodegenerative disease, neurons are not lost. Instead, electron microscopic and MRI studies in normal aging monkeys revealed age-related damage to myelin sheaths, loss of axons, and reduction in white matter volume which correlates with cognitive impairments. However, little is known about the cause of myelin defects or associated axon loss. The present study investigates the effect of age on signaling pathways between oligodendroglia and neurons using a custom PCR array to assess the expression of 87 genes of interest in cortical gray matter and white matter from the inferior parietal lobe (IPL) of normal rhesus monkeys ranging in age from 4.2 to 30.4 years old. From this array data, five target genes of interest were selected for further analysis to confirm gene expression and measure protein expression. The most interesting target gene identified is brain-derived neurotrophic factor (BDNF), which was the only gene that was altered at both mRNA and protein levels. In gray matter, BDNF mRNA was decreased. While the level of the mature form of the protein was unchanged, there was a specific decrease in the precursor form of BDNF. These alterations in the BDNF in gray matter could contribute to the vulnerability and loss of the axons with age.


Subject(s)
Aging/physiology , Brain-Derived Neurotrophic Factor/genetics , Brain/pathology , Cognitive Dysfunction/metabolism , Animals , Biopsy, Needle , Brain/metabolism , Cognition/physiology , Cognitive Dysfunction/genetics , Female , Genetic Association Studies/methods , Immunohistochemistry , Macaca mulatta , Male , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Reference Values , White Matter/metabolism
16.
J Mol Neurosci ; 64(2): 175-184, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29352444

ABSTRACT

Multiple lines of evidence show that the anti-aging and cognition-enhancing protein Klotho fosters neuronal survival, increases the anti-oxidative stress defense, and promotes remyelination of demyelinated axons. Thus, upregulation of the Klotho gene can potentially alleviate the symptoms and/or prevent the progression of age-associated neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases such as multiple sclerosis. Here we used a CRISPR-dCas9 complex to investigate single-guide RNA (sgRNA) targeting the Klotho promoter region for efficient transcriptional activation of the Klotho gene. We tested the sgRNAs within the - 1 to - 300 bp of the Klotho promoter region and identified two sgRNAs that can effectively enhance Klotho gene transcription. We examined the transcriptional activation of the Klotho gene using three different systems: a Firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) coincidence reporter system, a NLuc knock-in in Klotho 3'-UTR using CRISPR genomic editing, and two human cell lines: neuronal SY5Y cells and kidney HK-2 cells that express Klotho endogenously. The two sgRNAs enhanced Klotho expression at both the gene and protein levels. Our results show the feasibility of gene therapy for targeting Klotho using CRISPR technology. Enhancing Klotho levels has a therapeutic potential for increasing cognition and treating age-associated neurodegenerative, demyelinating and other diseases, such as chronic kidney disease and cancer.


Subject(s)
CRISPR-Cas Systems , Glucuronidase/genetics , Transcriptional Activation , Gene Editing/methods , Glucuronidase/metabolism , HEK293 Cells , Humans , Klotho Proteins , Up-Regulation
17.
J Mol Neurosci ; 57(2): 185-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26067431

ABSTRACT

The current study examined whether overexpression of Klotho (KL) in transgenic mice can enhance remyelination following cuprizone-induced demyelination and improves the clinical outcome in experimental autoimmune encephalomyelitis (EAE). Demyelination was achieved by feeding transgenic mice overexpressing the transmembrane form of Klotho (KL-OE) and wild-type (WT) littermates cuprizone-containing chow for 6 weeks. The animals were then allowed to remyelinate for 3 weeks. Paraphenylenediamine staining and platelets-derived growth factor receptor α (PDGFRα) and glutathione S-transferase pi (GSTpi) immunohistochemistry were performed on corpus callosum (CC) sections for quantification of myelin and progenitor and mature oligodendrocytes, respectively. The EAE model was induced with the MOG35-55 peptide. The animals were scored daily for clinical symptoms for 30 days. Following 6 weeks of demyelination, both KL-OE mice and WT littermates demonstrated almost complete and comparable demyelination of the CC. However, the level of spontaneous remyelination was increased approximately two-fold in KL-OE mice, although no significant differences in the numbers of PDGFRα and GSTpi-positive cells were observed. Following EAE induction, Klotho overexpression did not affect the clinical scores, likely due to the different roles Klotho plays in the brain and spinal cord. Thus, increasing Klotho expression should be considered as a therapy for enhancing remyelination in the brains of individuals with multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Glucuronidase/metabolism , Myelin Sheath/metabolism , Animals , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Corpus Callosum/pathology , Cuprizone/toxicity , Encephalomyelitis, Autoimmune, Experimental/genetics , Glucuronidase/genetics , Glutathione S-Transferase pi/genetics , Glutathione S-Transferase pi/metabolism , Klotho Proteins , Mice , Mice, Inbred C57BL , Monoamine Oxidase Inhibitors/toxicity , Myelin Sheath/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
18.
J Neurosci ; 35(6): 2358-71, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25673831

ABSTRACT

Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.


Subject(s)
Amyloid beta-Protein Precursor/physiology , Cognition/physiology , Glucuronidase/physiology , Longevity/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Behavior, Animal/physiology , Cognition Disorders/genetics , Cognition Disorders/psychology , Humans , Klotho Proteins , Longevity/physiology , Maze Learning/physiology , Mice , Mice, Transgenic , Nerve Net/pathology , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/pathology , tau Proteins/metabolism
19.
J Mol Neurosci ; 55(1): 76-90, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24907942

ABSTRACT

Klotho functions as an aging suppressor, which, in mice, extends lifespan when overexpressed and accelerates development of aging-like phenotypes when disrupted. Klotho is mainly expressed in brain and kidney and is secreted into the serum and CSF. We have previously shown that Klotho is reduced in brains of old monkeys, rats, and mice. We further reported the ability of Klotho to enhance oligodendrocyte differentiation and myelination. Here, we examined the signaling pathways induced by Klotho in MO3.13, a human oligodendrocytic hybrid cell line. We show that exogenous Klotho affects the ERK and Akt signaling pathways, decreases the proliferative abilities and enhances differentiation of MO3.13 cells. Furthermore, microarray analysis of Klotho-treated MO3.13 cells reveals a massive change in gene expression with 80 % of the differentially expressed genes being downregulated. Using gene set enrichment analysis, we predicted potential transcription factors involved in regulating Klotho-treated MO3.13 cells and found that these cells are highly enriched in the gene sets, that are similarly observed in cancer, cardiovascular disease, stress, aging, and hormone-related chemical and genetic perturbations. Since Klotho is downregulated in all brain tumors tested to date, enhancing Klotho has therapeutic potential for treating brain and other malignancies.


Subject(s)
Glucuronidase/pharmacology , Neurogenesis , Oligodendroglia/metabolism , Animals , Cell Line , Cell Proliferation , Humans , Klotho Proteins , MAP Kinase Signaling System , Mice , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/physiology , Recombinant Proteins/pharmacology , Transcription Factors/metabolism
20.
Biochemistry ; 53(34): 5579-87, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25110992

ABSTRACT

Membrane protein shedding is a critical step in many normal and pathological processes. The anti-aging protein klotho (KL), mainly expressed in kidney and brain, is secreted into the serum and CSF, respectively. KL is proteolytically released, or shed, from the cell surface by ADAM10 and ADAM17, which are the α-secretases that also cleave the amyloid precursor protein and other proteins. The transmembrane KL is a coreceptor with the FGF receptor for FGF23, whereas the shed form acts as a circulating hormone. However, the precise cleavage sites in KL are unknown. KL contains two major cleavage sites: one close to the juxtamembrane region and another between the KL1 and KL2 domains. We identified the cleavage site involved in KL release by mutating potential sheddase(s) recognition sequences and examining the production of the KL extracellular fragments in transfected COS-7 cells. Deletion of amino acids T958 and L959 results in a 50-60% reduction in KL shedding, and an additional P954E mutation results in further reduction of KL shedding by 70-80%. Deletion of amino acids 954-962 resulted in a 94% reduction in KL shedding. This mutant also had moderately decreased cell surface expression, yet had overall similar subcellular localization as that of WT KL, as demonstrated by immunofluorescence. Cleavage-resistant mutants could function as a FGFR coreceptor for FGF23, but they lost activity as a soluble form of KL in proliferation and transcriptional reporter assays. Cleavage between the KL1 and KL2 domains is dependent on juxtamembrane cleavage. Our results shed light onto mechanisms underlying KL release from the cell membrane and provide a target for potential pharmacologic interventions aimed at regulating KL secretion.


Subject(s)
Glucuronidase/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , DNA Primers , Glucuronidase/chemistry , Glucuronidase/genetics , Klotho Proteins , Molecular Sequence Data , Mutagenesis, Site-Directed , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...