Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38651805

ABSTRACT

Molecular chirality has traditionally been viewed as a binary property where a molecule is classified as either chiral or achiral, yet in recent decades, mathematical methods for quantifying chirality have been explored. Here, we use toy molecular systems to systematically compare the performance of two state-of-the-art chirality measures: (1) the Continuous Chirality Measure (CCM) and (2) the Chirality Characteristic (χ). We find that both methods exhibit qualitatively similar behavior when applied to simple molecular systems such as a four-site molecule or the polymer double-helix, but we show that the CCM may be more suitable for evaluating the chirality of arbitrary molecules or abstract structures such as normal vibrational modes. We discuss a range of considerations for applying these methods to molecular systems in general, and we provide links to user-friendly codes for both methods. We aim for this paper to serve as a concise resource for scientists attempting to familiarize themselves with these chirality measures or attempting to implement chirality measures in their own work.

2.
J Chem Phys ; 159(17)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37916592

ABSTRACT

Despite the desirability of polymers for use in many products due to their flexibility, light weight, and durability, their status as thermal insulators has precluded their use in applications where thermal conductors are required. However, recent results suggest that the thermal conductance of polymers can be enhanced and that their heat transport behaviors may be highly sensitive to nanoscale control. Here we use non-equilibrium molecular dynamics simulations to study the effect of mechanical twist on the steady-state thermal conductance across multi-stranded polyethylene wires. We find that a highly twisted double-helical polyethylene wire can display a thermal conductance up to three times that of its untwisted form, an effect which can be attributed to a structural transition in the strands of the double helix. We also find that in thicker wires composed of many parallel strands, adding just one twist can increase its thermal conductance by over 30%. However, we find that unlike stretching a polymer wire, which causes a monotonic increase in thermal conductance, the effect of twist is highly non-monotonic, and certain amounts of twist can actually decrease the thermal conductance. Finally, we apply the Continuous Chirality Measure (CCM) in an attempt to explore the correlation between heat conductance and chirality. The CCM is found to correlate with twist as expected, but we attribute the observed heat transport behaviors to structural factors other than chirality.

SELECTION OF CITATIONS
SEARCH DETAIL
...