Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Ind Pharm ; 50(3): 248-261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317433

ABSTRACT

OBJECTIVE: To develop Plectranthus amboinicus extract loaded Polyurethane foam dressing for burn wound healing. SIGNIFICANCE: Plectranthus amboinicus is traditionally used as an anti-inflammatory and wound-healing agent. Its incorporation in a PU foam dressing will offer the dual benefits of foam dressing as well as the healing potential of P. amboinicus. METHODS: PU foam dressings were prepared and loaded with P. ambionicus leaf extract (PAE). The dressings were prepared with varying concentrations (0.5-2%) of extract along with Toluene diisocyanate, polypropylene glycol (PPG), and liquid paraffin. The dressings were characterized by Scanning Electron Microscopy and evaluated for Moisture Vapor Transmission Rate, absorption rate, porosity, and mechanical strength followed by in vivo burn wound-healing studies in comparison to a marketed dressing. RESULTS: The MVTR was found to be optimum in formulations FD2-FD4 with values ranging from 2068.06 ± 0.99 to 2095.00 ± 0.25 g/m2/day. Absorption rate was found to be between 1.27 ± 0.01, 1.31 ± 0.00, and 1.30 ± 0.02 g/cm2 for formulations FD2-FD4. Formulations FD1, FD2, FD3, FD4 showed better porosity when compared to other formulations. Formulation FD4 was further characterized by micro-CT and a porosity of 46.32% was obtained. Tensile strength measurement indicated that the selected formulations were flexible enough to withstand regular handling during dressing changes. Acute dermal irritation performed on rabbits showed no irritation, erythema, eschar, and edema. In vivo wound-healing studies performed on albino wistar rats showed that the FD4 formulation has better wound healing property. CONCLUSION: Plectranthus ambionicus-loaded PU foam dressing demonstrated promising burn wound-healing potential.


Subject(s)
Burns , Plectranthus , Rats , Animals , Rabbits , Wound Healing , Bandages , Burns/drug therapy , Surgical Wound Infection , Polyurethanes
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256935

ABSTRACT

Tamanu oil has traditionally been used to treat various skin problems. The oil has wound-healing and skin-regenerating capabilities and encourages the growth of new skin cells, all of which are helpful for fading scars and hyperpigmentation, as well as promoting an all-around glow. The strong nutty odor and high viscosity are the major disadvantages associated with its application. The aim of this study was to create bigels using tamanu oil for its anti-scarring properties and predict the possible mechanism of action through the help of molecular docking studies. In silico studies were performed to analyze the binding affinity of the protein with the drug, and the anti-scarring activity was established using a full-thickness excision wound model. In silico studies revealed that the components inophyllum C, 4-norlanosta-17(20),24-diene-11,16-diol-21-oic acid, 3-oxo-16,21-lactone, calanolide A, and calophyllolide had docking scores of -11.3 kcal/mol, -11.1 kcal/mol, -9.8 kcal/mol, and -8.6 kcal/mol, respectively, with the cytokine TGF-ß1 receptor. Bigels were prepared with tamanu oil ranging from 5 to 20% along with micronized xanthan gum and evaluated for their pH, viscosity, and spreadability. An acute dermal irritation study in rabbits showed no irritation, erythema, eschar, or edema. In vivo excisional wound-healing studies performed on Wistar rats and subsequent histopathological studies showed that bigels had better healing properties when compared to the commercial formulation (MurivennaTM oil). This study substantiates the wound-healing and scar reduction potential of tamanu oil bigels.

3.
Int Sch Res Notices ; 2014: 810128, 2014.
Article in English | MEDLINE | ID: mdl-27437459

ABSTRACT

Lornoxicam is a selective cyclooxygenase-1 and cyclooxygenase-2 inhibitor that exhibits anti-inflammatory, analgesic, and antipyretic activities. It is used in osteoarthritis and rheumatoid arthritis; and in treatment of postoperative pain and primary dysmenorrhoea. Lornoxicam is completely insoluble in water but soluble in alkaline solutions. Hydrotropic solubilization is a technique used to increase the aqueous solubility of poorly water-soluble drugs and the present study was aimed at developing a hydrotropic technique to increase the solubility of lornoxicam, using 2 M sodium benzoate as the hydrotropic agent. Beer's law was obeyed in the concentration range of 4-24 µg/mL at 381 nm. The solubility of lornoxicam in distilled water considerably increased with the addition of a hydrotropic agent. The analysis of tablets indicated good correlation between the amounts estimated and label claim. The LOD and LOQ of lornoxicam were found to be 0.34 µg/mL and 1.038 µg/mL, respectively, indicating good sensitivity of the proposed method. The percentage recovery was found to be 99.99%-100.21%. Thus the proposed method is new, simple, environmentally friendly, accurate, and cost effective and can be successfully employed in routine analysis of lornoxicam in tablets.

4.
Pak J Pharm Sci ; 22(2): 175-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19339228

ABSTRACT

The poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid pre-corneal elimination of the drug may be overcome by the use of in situ gel forming systems that are instilled as drops into the eye and then undergo a sol-gel transition in the cul-de-sac. The present work describes the formulation and evaluation of an ophthalmic delivery system of an antibacterial agent ofloxacin, based on the concept of ion-activated in situ gelation. Sodium alginate was used as the gelling agent in combination with HPC (Hydroxy Propyl Cellulose) that acted as a viscosity-enhancing agent. In vitro release studies indicated that the alginate/HPC solution retained the drug better than the alginate or HPC solutions alone. The formulations were therapeutically efficacious, sterile, stable and provided sustained release of the drug over a period of time. These results demonstrate that the developed system is an alternative to conventional ophthalmic drops, patient compliance, industrially oriented and economical.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents/chemistry , Cellulose/analogs & derivatives , Drug Carriers , Eye/metabolism , Gels , Ofloxacin/chemistry , Administration, Topical , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/metabolism , Cellulose/chemistry , Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Compounding , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Kinetics , Male , Ofloxacin/administration & dosage , Ofloxacin/metabolism , Ophthalmic Solutions , Rabbits , Solubility , Viscosity
5.
Pak J Pharm Sci ; 21(4): 451-4, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18930869

ABSTRACT

Most of the floating systems have an inherent drawback of high variability in the GI transit time, invariably affecting the bioavailability of drug. To overcome it, a multiple unit floating system with extended GI transit time, capable of distributing widely throughout the GIT for effective enteric release of the drug has been sought. Microballoons loaded with drug in their outer polymer shells were prepared by novel emulsion solvent diffusion method. The ethanol: dicloromethane solution of drug and Eudragit-S were poured into an aqueous solution of PVA that was thermally controlled at 40 degrees C. The gas phase generated in the dispersed polymer droplet by the evaporation of solvent formed an internal cavity in the microsphere of the polymer with the drug. The flowability of the resulting microballoons improved when compared to pure drug. The microballoons on floatation along with the surfactant, floated continuously for more than 12 hours in the acidic medium in-vitro conditions. The in-vitro drug release profile of the formulation in the simulated gastric buffer showed no drug release, which emphasizes the enteric release property and in simulated intestinal buffer, a slow and controlled drug release of 60 to 84% was obtained over a period of 8 hours. Drug release was significantly affected by increased drug to polymer concentration at pH 6.8. The formulation was found to be physically and chemically stable as per the ICH guidelines.


Subject(s)
Diclofenac/chemistry , Gastrointestinal Transit , Microspheres , Administration, Oral , Chemistry, Pharmaceutical , Delayed-Action Preparations , Diclofenac/administration & dosage , Drug Stability , Ethanol/chemistry , Gastric Juice/chemistry , Hydrogen-Ion Concentration , Intestinal Secretions/chemistry , Polymethacrylic Acids/chemistry , Polyvinyl Alcohol/chemistry , Porosity , Solubility , Technology, Pharmaceutical/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...