Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Fungi (Basel) ; 9(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37504715

ABSTRACT

The two fungal human pathogens, Candida auris and Candida albicans, possess a variety of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to assess the inhibition of biofilm formation, while complementary microscopic techniques, such as confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris within a concentration range not affecting host cells, making it a promising candidate for therapeutic intervention in the future.

2.
Nat Commun ; 13(1): 3998, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810180

ABSTRACT

Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/ß-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy.


Subject(s)
Acetyl-CoA Carboxylase , Lipogenesis , Acetyl Coenzyme A/metabolism , Acetyl-CoA Carboxylase/metabolism , Fatty Acids/metabolism , Lipogenesis/physiology , Stem Cells/metabolism
3.
Curr Med Chem ; 28(24): 4935-4953, 2021.
Article in English | MEDLINE | ID: mdl-33234090

ABSTRACT

The development of biodegradable nanoparticles is an important tool for the biological transport of chemical compounds. The nanoencapsulation reduces the biopharmaceutical and pharmacokinetic drawbacks of compounds and enhances their biological properties. Naturally occurring polymers such as proteins and polysaccharides have been widely applied in the development of nanostructured systems of several therapeutic agents. Among them is chitosan, a crustacean-carapace-chitin derived biopolymer. In addition to its biocompatibility and biodegradability, chitosan is known for its mucoadhesion properties. Chitosan-based nanostructured systems potentiate most of the aspects of the loaded drugs, including cellular transport and other biological effects. The use of chitosan nanoparticles enhances permeation, stability, and bioactivity of natural compounds. In this review, an overview of the main features of chitosan nanoparticles that improved in vitro and in vivo effects of bioactive natural molecules is given, emphasizing the results obtained with curcumin.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Curcumin/pharmacology , Humans
4.
Curr Med Chem ; 28(9): 1841-1873, 2021.
Article in English | MEDLINE | ID: mdl-32223729

ABSTRACT

Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.


Subject(s)
Mycoses , Nanoparticles , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Fungal , Echinocandins , Humans , Mycoses/drug therapy
5.
Antibiotics (Basel) ; 9(11)2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33171584

ABSTRACT

Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.

7.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Article in English | MEDLINE | ID: mdl-31390020

ABSTRACT

Actinobacteria are known by their ability to produce several antimicrobial compounds of biotechnological interest. Thus, in this study, we isolated and identified by partial 16S RNA sequencing ∼100 actinobacteria isolates from guarana (Paullinia cupana) bulk soil. Besides, we isolated from the actinobacteria Streptomyces morookaense AM25 a novel cyclic peptide, named gloeosporiocide, molecular formula C44H48N11O7S3 (calculated 938.2901), and characterized by the presence of cyclized cysteins to form three thiazols. The novel compound had activity against the plant pathogen Colletotrichum gloeosporioides, assayed by the paper disk diffusion method (42.7% inhibition, 0.1 mg disk-1) and by the microdilution assay (1.25 g L-1). Our results reveal the potential of the actinobacteria from the Amazon rhizospheric soils as biocontrol agents as well as producers of new compounds with antifungal activity. Thus, this work constitutes a step forward in the development of the biotechnology of actinobacteria in the production of compounds of agronomic interest.


Subject(s)
Antibiosis , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology , Soil Microbiology , Streptomyces/metabolism , Antifungal Agents/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
8.
Infect Immun ; 87(9)2019 09.
Article in English | MEDLINE | ID: mdl-31285248

ABSTRACT

Actinobacillus pleuropneumoniae is a capnophilic pathogen of the porcine respiratory tract lacking enzymes of the oxidative branch of the tricarboxylic acid (TCA) cycle. We previously claimed that A. pleuropneumoniae instead uses the reductive branch in order to generate energy and metabolites. Here, we show that bicarbonate and oxaloacetate supported anaerobic growth of A. pleuropneumoniae Isotope mass spectrometry revealed heterotrophic fixation of carbon from stable isotope-labeled bicarbonate by A. pleuropneumoniae, which was confirmed by nano-scale secondary ion mass spectrometry at a single-cell level. By gas chromatography-combustion-isotope ratio mass spectrometry we could further show that the labeled carbon atom is mainly incorporated into the amino acids aspartate and lysine, which are derived from the TCA metabolite oxaloacetate. We therefore suggest that carbon fixation occurs at the interface of glycolysis and the reductive branch of the TCA cycle. The heme precursor δ-aminolevulinic acid supported growth of A. pleuropneumoniae, similar to bicarbonate, implying that anaplerotic carbon fixation is needed for heme synthesis. However, deletion of potential carbon-fixing enzymes, including PEP-carboxylase (PEPC), PEP-carboxykinase (PEPCK), malic enzyme, and oxaloacetate decarboxylase, as well as various combinations thereof, did not affect carbon fixation. Interestingly, generation of a deletion mutant lacking all four enzymes was not possible, suggesting that carbon fixation in A. pleuropneumoniae is an essential metabolic pathway controlled by a redundant set of enzymes. A double deletion mutant lacking PEPC and PEPCK was not impaired in carbon fixation in vitro but showed reduction of virulence in a pig infection model.


Subject(s)
Actinobacillus Infections/metabolism , Actinobacillus pleuropneumoniae , Carbon Cycle/physiology , Pleuropneumonia/metabolism , Virulence/physiology , Actinobacillus pleuropneumoniae/metabolism , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Disease Models, Animal , Swine
9.
ISME J ; 13(8): 2018-2030, 2019 08.
Article in English | MEDLINE | ID: mdl-30952997

ABSTRACT

In a given habitat, bacterial cells often experience recurrent exposures to the same environmental stimulus. The ability to memorize the past event and to adjust current behaviors can lead to efficient adaptation to the recurring stimulus. Here we demonstrate that the versatile bacterium Pseudomonas aeruginosa adopts a virulence phenotype after serial passage in the invertebrate model host Galleria mellonella. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under rich medium conditions in vitro. Transcriptional reprogramming seemed to be induced by a host-specific food source, as reprogramming was also observed upon cultivation of P. aeruginosa in rich medium supplemented with polyunsaturated long-chain fatty acids. The establishment of induced memory responses adds a time dimension and seems to fill the gap between long-term evolutionary genotypic adaptation and short-term induced individual responses. Efforts to unravel the fundamental mechanisms that underlie the carry-over effect to induce such memory responses will continue to be of importance as hysteretic behavior can serve survival of bacterial populations in changing and challenging habitats.


Subject(s)
Adaptation, Physiological , Fatty Acids, Unsaturated/metabolism , Host-Pathogen Interactions , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Animals , Moths , Phenotype , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Virulence
10.
Acta sci., Biol. sci ; 41: e48785, 20190000. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460898

ABSTRACT

Fungi are present in the most diverse environments including the interior of plant tissues, living as endophytes without causing apparent damage. These endophytes are producers of secondary metabolites, also known as natural products, such as fungicides. Here, we evaluated the ethyl acetate fractions obtained from endophytic fungiisolated from plants in the genus Begonia. The fractions were submitted to inhibitorytest against the plant pathogens Diaporthe phaseolorum and Colletotrichum gloeosporioides. From the 88 ethyl acetate fractions evaluated, 14.7 % inhibited C. gloeosporioidesand 11.3 %inhibited D. phaseolorum. One fungal isolate displaying an active fraction was selected for chemical investigation. The fungus identified as Neopestalotiopsissp., produced a compound that was active against D. phaseolorum, with a MIC of 312 μg mL-1(1,695.3 μM). The compound was identified by mass spectrometry and 1H NMR as the known compound fumiquinone B. The results highlight that the endophytes are capable of producing compounds that may be used to control plant pathogens. The compound fumiquinone B is reported for the first time as an antifungal agent against D. phaseolorum, a relevant plant pathogen worldwide. This is also the first report of the production of fumiquinone B by the genus Neopestalotiopsis.


Subject(s)
Antifungal Agents/metabolism , Fungi/immunology
11.
Biomolecules ; 8(4)2018 10 30.
Article in English | MEDLINE | ID: mdl-30380779

ABSTRACT

During the course of our ongoing work to discover new inhibitors of biofilm formation of Staphylococcus aureus from fungal sources, we observed biofilm inhibition by cytochalasans isolated from cultures of the ascomycete Hypoxylon fragiforme for the first time. Two new compounds were purified by a bioassay-guided fractionation procedure; their structures were elucidated subsequently by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This unexpected finding prompted us to test further cytochalasans from other fungi and from commercial sources for comparison. Out of 21 cytochalasans, 13 showed significant inhibition of Staphylococcus aureus biofilm formation at subtoxic levels. These findings indicate the potential of cytochalasans as biofilm inhibitors for the first time, also because the minimum inhibitory concentrations (MIC) are independent of the anti-biofilm activities. However, cytochalasans are known to be inhibitors of actin, making some of them very toxic for eukaryotic cells. Since the chemical structures of the tested compounds were rather diverse, the inclusion of additional derivatives, as well as the evaluation of their selectivity against mammalian cells vs. the bacterium, will be necessary as next step in order to develop structure-activity relationships and identify the optimal candidates for development of an anti-biofilm agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Staphylococcus aureus/physiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Fungi/chemistry , Magnetic Resonance Spectroscopy , Metabolome
12.
Front Immunol ; 9: 495, 2018.
Article in English | MEDLINE | ID: mdl-29675017

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.


Subject(s)
Dendritic Cells/immunology , Fatty Acids/immunology , Immunity, Innate , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Th1 Cells/immunology , Tuberculosis/immunology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/immunology , Animals , Dendritic Cells/microbiology , Dendritic Cells/pathology , Fatty Acids/genetics , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/genetics , Th1 Cells/microbiology , Th1 Cells/pathology , Tuberculosis/genetics , Tuberculosis/pathology
13.
J Nat Prod ; 81(4): 778-784, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29489350

ABSTRACT

The need for effective compounds to combat antimicrobial resistance and biofilms which play important roles in human infections continues to pose a major health challenge. Seven previously undescribed acyclic diterpenes linked to isocitric acid by an ether linkage, microporenic acids A-G (1-7), were isolated from the cultures of a hitherto undescribed species of the genus Microporus (Polyporales, Basidiomycota) originating from Kenya's Kakamega forest. Microporenic acids D and E (4 and 5) showed antimicrobial activity against a panel of Gram positive bacteria and a yeast, Candida tenuis. Moreover, microporenic acids A and B (1 and 2) demonstrated dose-dependent inhibition of biofilm formation by Staphylococcus aureus. Compound 1 further showed significant activity against Candida albicans and Staphylococcus aureus preformed biofilms.


Subject(s)
Anti-Infective Agents/pharmacology , Basidiomycota/chemistry , Biofilms/drug effects , Animals , Candida albicans/drug effects , Cell Line , Cell Line, Tumor , Gram-Positive Bacteria/drug effects , HeLa Cells , Humans , Kenya , Mice , Microbial Sensitivity Tests/methods , Staphylococcus aureus/drug effects
14.
Curr Med Chem ; 25(2): 123-140, 2018.
Article in English | MEDLINE | ID: mdl-28738771

ABSTRACT

BACKGROUND: Fumitremorgins are mycotoxins but can also inhibit cancer cells and reverse their drug resistance. OBJECTIVE: The bioactivity of prenylated cyclo-Trp-Pro dipeptides and their derivatives concerning their application in anti-cancer therapies will be discussed. METHODS: Reports on the discovery and assessment of this class of fungal compounds are compiled from literature using Google Scholar and PubMed. The bioactivities of the natural compounds are discussed with the aim of their improvement for cancer therapy. RESULTS: Although a number of compounds of this class have been found, only a minority of them showed bioactivity in the applied bioassays. Fumitremorgins and related compounds are active against various cancer cells but they are also mycotoxins. Some of these natural compounds can arrest cancer cells in their cell cycle and some can block ABC-transporters and reverse resistance in chemotherapy. Structure activity relationships have been deduced leading to the prediction of highly active compounds. Several easily accessible derivatives of these natural products have been discovered being highly selective and non-toxic. CONCLUSION: Sophisticated screening methods, high throughput screening, metabolic engineering, and synthetic biology are novel and promising technologies for the search for highly active drugs. Rapid gene sequencing in combination with engineered biosynthetic pathways should contribute substantially to novel pharmaceutics.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Indenes/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Biological Products/chemistry , Cell Proliferation/drug effects , Humans , Indoles/chemistry , Neoplasms/pathology
15.
Microorganisms ; 5(4)2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29231891

ABSTRACT

Treating infections organized in biofilms is a challenge due to the resistance of the pathogens against antibiotics and host immune cells. Many fungi grow in a wet environment, favorable for the growth of bacterial biofilms, and we speculated that fungi possess some strategies to control these bacterial biofilms. A fungus identified as Hypoxylon fragiforme, was collected in the Harz Mountains, Germany, and its mycelial culture was fermented in different culture media for 67 days to test its biological potential against bacterial biofilms. Sclerin, sclerin diacid and its 3-methyl monoester (methyl 1-(5-hydroxy-6-carboxylic-2,3,4-trimethylphenyl) propionate) are here described for the first time from this fungus. Sclerin and its diacid interfered with the biofilm formation of the pathogen Staphylococcus aureus, inhibiting 86% and 80% of the biofilm at 256 µg mL-1, respectively, but not killing the bacterium. Interestingly, the monomethylester of sclerin diacid was inactive. Although these compounds did not possess any activity against a pre-formed biofilm, they prevented its formation at subtoxic concentrations. Furthermore, sclerin and its diacid displayed a high specificity against Staphylococcus aureus, indicating a good strategy against pathogenic biofilms when combined with antibiotics.

16.
Biol Chem ; 399(1): 13-28, 2017 12 20.
Article in English | MEDLINE | ID: mdl-28822220

ABSTRACT

Eremophilanes are sesquiterpenes with a rearranged carbon skeleton formed both by plants and fungi, however, almost no plant eremophilanes are found in fungi. These eremophilanes possess mainly phytotoxic, antimicrobial, anticancer and immunomodulatory properties and in this review fungal eremophilanes with bioactivities of potential medicinal applications are reviewed and discussed. A special focus is set on natural products bearing highly functionalized fatty acids at C-1 or C-3 position of the eremophilane backbone. Many of these fatty acids seem to contribute to the bioactivity of the metabolites enhancing the activity of the sesquiterpene moieties. Several approaches for optimization of these natural products for clinical needs and testing of the resulting derivatives are presented and discussed. The combination of identification of bioactive natural products with their subsequent improvement using a variety of genetical or chemical tools and the pharmacokinetic assessment of the products is presented here as a promising approach to new drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fungi/chemistry , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Fungi/metabolism , Humans , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism
17.
Int J Syst Evol Microbiol ; 67(8): 2804-2810, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28820095

ABSTRACT

Two Gram-negative, heterotrophic, aerobic, prosthecated, marine bacteria, designated strains MCS23T and MCS27T, were isolated from seawater samples. NaCl was required for growth. The major polar lipid detected in strain MCS27T was phosphatidylglycerol, whereas those detected in MCS23T were phosphatidylglycerol, sulfoquinovosyl diacylglycerol and 1,2-diacyl-3-α-d-glucuronopyranosyl-sn-glycerol taurineamide. The most abundant cellular fatty acids were C18 : 1ω7 and C16 : 0, hydroxyl-fatty acids were 3-OH C12 : 0 in both strains and 3-OH C11 : 0 in MCS23T. Strains MCS23T and MCS27T had DNA G+C contents of 57.0 and 55.0 mol%, respectively. The two strains shared 99.3 % 16S rRNA gene sequence similarity; levels of similarity with the type strains of species of the genus Henriciella were 99.4-97.8 % but DNA-DNA hybridizations were 53 % or lower. Besides their 16S rRNA gene sequences, the novel strains can be differentiated from other species of the genus Henriciella by cell morphology, lipid and fatty acid patterns and enzyme activities. The data obtained led to the identification of two novel species, for which the names Henriciella barbarensis sp. nov. (type strain MCS23T=LMG 28705T=CCUG 66934T) and Henriciella algicola sp. nov. (type strain MCS27T=LMG 29152T=CCUG 67844T) are proposed. As these two novel species are the first prosthecate species in the genus Henriciella, an emended genus description is also provided.


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Seawater/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/genetics , Fatty Acids/analysis , Glycolipids/chemistry , Nucleic Acid Hybridization , Phosphatidylglycerols/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , United States Virgin Islands
18.
AIMS Microbiol ; 3(1): 50-60, 2017.
Article in English | MEDLINE | ID: mdl-31294148

ABSTRACT

Infections where pathogens are organized in biofilms are difficult to treat due to increased antibiotic resistances in biofilms. To overcome this limitation new approaches are needed to control biofilms. One way is to screen natural products from organisms living in a wet environment. The rational is that these organisms are preferentially threatened by biofilm formation and may have developed strategies to control pathogens in these biofilms. In a screen of fungal isolates obtained from the Harz mountains in Germany several strains have been found producing compounds for the inhibition of biofilms. One of these strains has been identified as Clonostachys candelabrum producing aurantiogliocladin. Biological tests showed aurantiogliocladin as a weak antibiotic which was active against Staphylococcus epidermidis but not S. aureus. Aurantiogliocladin could also inhibit biofilm formation of several of the tested bacterial strains. This inhibition, however, was never complete but biofilm inhibition activity was also found at concentrations below the minimal inhibitory concentrations, e. g. Bacillus cereus with a MIC of 128 µg mL-1 showed at 32 µg mL-1 still 37% biofilm inhibition. In agreement with this finding was the observation that aurantiogliocladin was bacteriostatic for the tested bacteria but not bactericidal. Because several closely related toluquinones with different antibiotic activities have been reported from various fungi screening of a chemical library of toluquinones is suggested for the improvement of biofilm inhibition activities.

19.
Environ Microbiol ; 18(11): 4254-4264, 2016 11.
Article in English | MEDLINE | ID: mdl-27696655

ABSTRACT

Pathogens embedded in biofilms are involved in many infections and are very difficult to treat with antibiotics because of higher resistance compared with planktonic cells. Therefore, new approaches for their control are urgently needed. One way to search for biofilm dispersing compounds is to look at defense strategies of organisms exposed to wet environments, which makes them prone to biofilm infections. It is reasonable to assume that mushrooms have developed mechanisms to control biofilms on their sporocarps (fruiting bodies). A preliminary screening for biofilms on sporocarps revealed several species with few or no bacteria on their sporocarps. From the edible mushroom Coprinus comatus where no bacteria on the sporocarp could be detected (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named coprinuslactone, was isolated. Coprinuslactone interfered with quorum-sensing and dispersed biofilms of Pseudomonas aeruginosa, where it also reduced the formation of the pathogenicity factors pyocyanin and rhamnolipid B. Coprinuslactone also damaged Staphylococcus aureus cells in biofilms at subtoxic concentrations. Furthermore, it inhibited UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), essential for bacterial cell wall synthesis. These two modes of action ensure the inhibition of a broad spectrum of pathogens on the fruiting body but may also be useful for future clinical applications.


Subject(s)
Alkyl and Aryl Transferases/genetics , Bacterial Proteins/genetics , Biofilms/drug effects , Coprinus/chemistry , Lactones/pharmacology , Pseudomonas aeruginosa/physiology , Quorum Sensing/drug effects , Staphylococcus aureus/drug effects , Vegetables/microbiology , Alkyl and Aryl Transferases/metabolism , Bacterial Proteins/metabolism , Coprinus/metabolism , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Glycolipids/metabolism , Lactones/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Staphylococcus aureus/enzymology , Staphylococcus aureus/physiology , Vegetables/chemistry , Vegetables/metabolism
20.
mBio ; 7(5)2016 09 06.
Article in English | MEDLINE | ID: mdl-27601574

ABSTRACT

UNLABELLED: Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. IMPORTANCE: Recombinant attenuated bacterial vector systems based on genetically engineered Salmonella have been developed as highly potent vaccines. Due to the pathogenic properties of Salmonella, efficient attenuation is required for clinical applications. Since the hallmark study by Hoiseth and Stocker in 1981 (S. K. Hoiseth and B. A. D. Stocker, Nature 291:238-239, 1981, http://dx.doi.org/10.1038/291238a0), the auxotrophic ΔaroA mutation has been generally considered safe and universally used to attenuate bacterial strains. Here, we are presenting the remarkable finding that a deletion of aroA leads to pronounced alterations of gene expression, metabolism, and cellular physiology, which resulted in increased immunogenicity, virulence, and adjuvant potential of Salmonella. These results suggest that the enhanced immunogenicity of aroA-deficient Salmonella strains might be advantageous for optimizing bacterial vaccine carriers and immunotherapy. Accordingly, we demonstrate a superior performance of ΔaroA Salmonella in bacterium-mediated tumor therapy. In addition, the present study highlights the importance of a functional shikimate pathway to sustain bacterial physiology and metabolism.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Bacterial Proteins/genetics , Gene Deletion , Salmonella Infections/microbiology , Salmonella Infections/pathology , Salmonella typhimurium/pathogenicity , Virulence Factors/genetics , Animals , Body Weight , Disease Models, Animal , Gene Expression Profiling , Host-Pathogen Interactions , Metabolic Networks and Pathways/genetics , Metabolomics , Mice , Salmonella typhimurium/immunology , Salmonella typhimurium/physiology , Shikimic Acid/metabolism , Tumor Necrosis Factor-alpha/blood , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...