Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0293021, 2023.
Article in English | MEDLINE | ID: mdl-38019739

ABSTRACT

Footprint morphology reflects the anatomy of the trackmaker's foot and is direct evidence for the animal's behaviour. Consequently, fossil tracks can be used to infer ancient diversity, ethology, and evolutionary trends. This is particularly useful for deep-time intervals during which the early history of an animal group is reliant upon limited fossil skeletal material. Fossil tracks of early birds and theropods, the co-existing dinosaurian ancestors of birds, co-occur in the rock record since the Early Cretaceous. However, the evolutionary transition from dinosaur to bird and the timing of the birds' origin are still contested. Skeletal remains of the basal-most birds Aurornis, Anchiornis, Archaeopteryx and Xiaotingia are Middle to Late Jurassic, while tracks with tentative bird affinities, attributed to dinosaurs, are known from as early as the Late Triassic. Here, we present numerous, well-provenanced, Late Triassic and Early Jurassic tridactyl tracks from southern Africa, with demonstrable bird-like affinities, predating basal bird body fossils by c. 60 million years.


Subject(s)
Dinosaurs , Fossils , Animals , Biological Evolution , Dinosaurs/anatomy & histology , Africa, Southern , Foot/anatomy & histology , Phylogeny
2.
PeerJ ; 11: e15970, 2023.
Article in English | MEDLINE | ID: mdl-37790620

ABSTRACT

Using modern ichnological and stratigraphic tools, we reinvestigate two iconic sauropodomorph-attributed tetradactyl ichnogenera, Pseudotetrasauropus and Tetrasauropus, and their stratigraphic occurrences in the middle Upper Triassic of Lesotho. These tracks have been reaffirmed and are stratigraphically well-constrained to the lower Elliot Formation (Stormberg Group, Karoo Basin) with a maximum depositional age range of <219-209 Ma (Norian). This represents the earliest record of basal sauropodomorph trackways in Gondwana, if not globally. Track and trackway morphology, the sedimentary context of the tracks, and unique features (e.g., drag traces) have enabled us to discuss the likely limb postures and gaits of the trackmakers. Pseudotetrasauropus has bipedal (P. bipedoida) and quadrupedal (P. jaquesi) trackway states, with the oldest quadrupedal Pseudotetrasauropus track and trackway parameters suggestive of a columnar, graviportal limb posture in the trackmaker. Moreover, an irregularity in the intermanus distance and manus orientation and morphology, in combination with drag traces, is indicative of a non-uniform locomotory suite or facultative quadrupedality. Contrastingly, Tetrasauropus, the youngest trackway, has distinctive medially deflected, robust pedal and manual claw traces and a wide and uniform intermanus distance relative to the interpedal. These traits suggest a quadrupedal trackmaker with clawed and fleshy feet and forelimbs held in a wide, flexed posture. Altogether, these trackways pinpoint the start of the southern African ichnological record of basal sauropodomorphs with bipedal and quadrupedal locomotory habits to, at least, c. 215 Ma in the middle Late Triassic.


Subject(s)
Dinosaurs , Fossils , Animals , Dinosaurs/anatomy & histology , Locomotion , Gait , Lesotho
3.
PLoS One ; 15(1): e0226847, 2020.
Article in English | MEDLINE | ID: mdl-31995575

ABSTRACT

The Karoo igneous rocks represent one of the largest continental flood basalt events (by volume) on Earth, and are not normally associated with fossils remains. However, these Pliensbachian-Toarcian lava flows contain sandstone interbeds that are particularly common in the lower part of the volcanic succession and are occasionally fossiliferous. On a sandstone interbed in the northern main Karoo Basin, we discovered twenty-five tridactyl and tetradactyl vertebrate tracks comprising five trackways. The tracks are preserved among desiccation cracks and low-amplitude, asymmetrical ripple marks, implying deposition in low energy, shallow, ephemeral water currents. Based on footprint lengths of 2-14 cm and trackway patterns, the trackmakers were both bipedal and quadrupedal animals of assorted sizes with walking and running gaits. We describe the larger tridactyl tracks as "grallatorid" and attribute them to bipedal theropod dinosaurs, like Coelophysis, a genus common in the Early Jurassic of southern Africa. The smallest tracks are tentatively interpreted as Brasilichnium-like tracks, which are linked to synapsid trackmakers, a common attribution of similar tracks from the Lower to Middle Jurassic record of southern and southwestern Gondwana. The trackway of an intermediate-sized quadruped reveals strong similarities in morphometric parameters to a post-Karoo Zimbabwean trackway from Chewore. These trackways are classified here as a new ichnogenus attributable to small ornithischian dinosaurs as yet without a body fossil record in southern Africa. These tracks not only suggest that dinosaurs and therapsids survived the onset of the Drakensberg volcanism, but also that theropods, ornithischians and synapsids were among the last vertebrates that inhabited the main Karoo Basin some 183 Ma ago. Although these vertebrates survived the first Karoo volcanic eruptions, their rapidly dwindling habitat was turned into a land of fire as it was covered by the outpouring lavas during one of the most dramatic geological episodes in southern Africa.


Subject(s)
Dinosaurs/anatomy & histology , Mammals/anatomy & histology , Africa, Southern , Animals , Body Size , Dinosaurs/classification , Dinosaurs/physiology , Fossils , Gait , Mammals/classification , Mammals/physiology , Volcanic Eruptions
4.
PeerJ ; 4: e2285, 2016.
Article in English | MEDLINE | ID: mdl-27635310

ABSTRACT

Footprint morphology (e.g., outline shape, depth of impression) is one of the key diagnostic features used in the interpretation of ancient vertebrate tracks. Over 80 tridactyl tracks, confined to the same bedding surface in the Lower Jurassic Elliot Formation at Mafube (eastern Free State, South Africa), show large shape variability over the length of the study site. These morphological differences are considered here to be mainly due to variations in the substrate rheology as opposed to differences in the trackmaker's foot anatomy, foot kinematics or recent weathering of the bedding surface. The sedimentary structures (e.g., desiccation cracks, ripple marks) preserved in association with and within some of the Mafube tracks suggest that the imprints were produced essentially contemporaneous and are true dinosaur tracks rather than undertracks or erosional remnants. They are therefore valuable not only for the interpretation of the ancient environment (i.e., seasonally dry river channels) but also for taxonomic assessments as some of them closely resemble the original anatomy of the trackmaker's foot. The tracks are grouped, based on size, into two morphotypes that can be identified as Eubrontes-like and Grallator-like ichnogenera. The Mafube morphotypes are tentatively attributable to large and small tridactyl theropod trackmakers, possibly to Dracovenator and Coelophysis based on the following criteria: (a) lack of manus impressions indicative of obligate bipeds; (b) long, slender-digits that are asymmetrical and taper; (c) often end in a claw impression or point; and (d) the tracks that are longer than broad. To enable high-resolution preservation, curation and subsequent remote studying of the morphological variations of and the secondary features in the tracks, low viscosity silicone rubber was used to generate casts of the Mafube tracks.

SELECTION OF CITATIONS
SEARCH DETAIL
...