Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 325(1): 93-100, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18571189

ABSTRACT

A kinetic study of Aldrich humic acid sorption onto a quartz sand surface has revealed an initial rapid uptake of humic acid molecules followed by a much slower sorption. The humic acid molecular weight and chemical fractionation resulting from adsorption onto the simple quartz sand surface were investigated for the two kinetic steps by coupled asymmetric flow-field flow fractionation-UV/visible absorption spectrophotometry. The molecular weight distribution of residual humic acid in solution after adsorption deviated from the original molecular weight distribution, showing preferential adsorption of certain molecular weight components. This fractionation is different after the two kinetic steps. Humic acid molecules characterised by a molecular weight below 4800 Da and with a weight-average molecular weight (M(w)) of 1450 Da were adsorbed after the fast kinetic step, whereas humic acid molecules in the molecular weight range 1400-9200 Da and of M(w) 3700 Da were adsorbed after the slower uptake. Therefore, the adsorption of low molecular weight humic components takes place initially, and is then followed by the adsorption of higher molecular weight components. Chemical adsorptive fractionation, investigated by studying the 253 nm/203 nm absorbance ratio over time, shows that aromatic components are preferentially adsorbed during the fast kinetic step. The fractionation pattern may be explained by the physicochemical characteristics of the Aldrich humic acid and the underlying sorption processes. The trend for the sorption kinetics of europium onto the quartz sand surface in the presence of humic acid is similar to that of the humic acid itself.

2.
J Environ Monit ; 10(3): 315-24, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18392273

ABSTRACT

The distribution of 152Eu between magnesium hydroxide bulk, colloids and solution has been assessed under alkaline conditions, such as those in nuclear fuel storage ponds. The colloidal phase has been characterised by two complementary methods: coupled ultrafiltration-ICP-AES and scanning electron microscopy. The quantity and the size distribution of the colloidal phase is strongly ionic strength-dependent. A decrease of the quantity of colloids, in particular the larger size ranges, has been observed with increasing ionic strength. Small colloids (1 kDa-10 kDa fraction) are predominant at all ionic strengths. The morphology of colloids, observed by field-emission gun scanning electron microscopy, appears to change from hexagonal prismatic (characteristic to the mineral) to spherical (energetically more favourable) as size decreases. The distribution of 152Eu between the solid and liquid/colloidal phases has been investigated at carbonate concentrations ranging from 0 to 10(-2) M by coupled ultrafiltration and gamma-spectrometry. Mg(OH)2 bulk appears to be a very strong sorbent for 152Eu, since complete sorption onto the bulk happens for carbonate concentrations as high as 10(-3) M. Scavenging of 152Eu by Mg(OH)2 colloids is negligible in the presence of Mg(OH)2 bulk. The distribution of 152Eu between liquid and colloidal phases has been investigated in the absence of bulk at various carbonate concentrations. A significant uptake of 152Eu by the colloids in solution has been observed, which decreases with increasing carbonate concentration. 152Eu appears to be mainly associated to the smallest colloids (1 kDa-10 kDa fraction). There is a strong correlation between the sorption properties and the surface area of the colloids.


Subject(s)
Carbonates/chemistry , Colloids/chemistry , Environmental Monitoring , Europium/analysis , Magnesium Hydroxide/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Europium/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Molecular Weight , Osmolar Concentration , Spectrophotometry, Atomic , Ultrafiltration
3.
J Environ Monit ; 9(4): 329-47, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17410308

ABSTRACT

Metal ions form strong complexes with humic substances. When the metal ion is first complexed by humic material, it is bound in an 'exchangeable' mode. The metal ion in this fraction is strongly bound, however, if the metal-humic complex encounters a stronger binding site on a surface, then the metal ion may dissociate from the humic substance and be immobilised. However, over time, exchangeably-bound metal may transfer to a 'non-exchangeable' mode. Transfer into this mode and dissociation from it are slow, regardless of the strength of the competing sink, and so immobilisation may be hindered. A series of coupled chemical transport calculations has been performed to investigate the likely effects of non-exchangeable binding upon the transport of metal ions in the environment. The calculations show that metal in the non-exchangeable mode will have a significantly higher mobility than that in the exchangeable mode. The critical factor is the ratio of the non-exchangeable first-order dissociation rate constant and the residence time in the groundwater column, metal ion mobility increasing with decreasing rate constant. A second series of calculations has investigated the effect of the sorption to surfaces of humic/metal complexes on the transport of the non-exchangeably bound metal. It was found that such sorption may reduce mobility, depending upon the humic fraction to which the metal ion is bound. For the more weakly sorbing humic fractions, under ambient conditions (humic concentration etc.) the non-exchangeable fraction may still transport significantly. However, for the more strongly sorbed fractions, the non-exchangeable fraction has little effect upon mobility. In addition to direct retardation, sorption also increases the residence time of the non-exchangeable fraction, giving more time for dissociation and immobilisation. The non-exchangeable dissociation reaction, and the sorption reaction have been classified in terms of two Damkohler numbers, which can be used to determine the importance of chemical kinetics during transport calculations. These numbers have been used to develop a set of rules that determine when full chemical kinetic calculations are required for a reliable prediction, and when equilibrium may be assumed, or when the reactions are sufficiently slow that they may be ignored completely.


Subject(s)
Humic Substances , Metals/chemistry , Models, Chemical , Water Pollutants, Radioactive/chemistry , Kinetics , Numerical Analysis, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...