Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Br J Clin Pharmacol ; 89(10): 3175-3194, 2023 10.
Article in English | MEDLINE | ID: mdl-37293836

ABSTRACT

AIMS: To develop paediatric physiologically based pharmacokinetic modelling (PBPK) models of semaglutide to estimate the pharmacokinetic profile for subcutaneous injections in children and adolescents with healthy and obese body weights. METHODS: Pharmacokinetic modelling and simulations of semaglutide subcutaneous injections were performed using the Transdermal Compartmental Absorption & Transit model implemented in GastroPlus v.9.5 modules. A PBPK model of semaglutide was developed and verified in the adult population, by comparing the simulated plasma exposure with the observed data, and further scaled to the paediatric populations with normal and obese body weight. RESULTS: The semaglutide PBPK model was successfully developed in adults and scaled to the paediatric population. Our paediatric PBPK simulations indicated a significant increase in maximum plasma concentrations for the 10-14 years' paediatric population with healthy body weights, which was higher than the observed values in adults at the reference dose. Since gastrointestinal adverse events are related to increased semaglutide concentrations, peak concentrations outside the target range may represent a safety risk for this paediatric age group. Besides, paediatric PBPK models indicated that body weight was inversely related to semaglutide maximum plasma concentration, corroborating the consensus on the influence of body weight on semaglutide PK in adults. CONCLUSION: Paediatric PBPK was successfully achieved using a top-down approach and drug-related parameters. The development of unprecedented PBPK models will support paediatric clinical therapy for applying aid-safe dosing regimens for the paediatric population in diabetes treatment.


Subject(s)
Models, Biological , Obesity , Adult , Child , Humans , Adolescent , Body Weight , Obesity/drug therapy , Computer Simulation
2.
Pharmaceutics ; 15(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37111580

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.

3.
Mini Rev Med Chem ; 23(2): 170-186, 2023.
Article in English | MEDLINE | ID: mdl-35726420

ABSTRACT

Prediction of pulmonary metabolites following inhalation of a locally acting pulmonary drug is essential to the successful development of novel inhaled medicines. The lungs present metabolic enzymes, therefore they influence drug disposal and toxicity. The present review provides an overview of alternative methods to evaluate the pulmonary metabolism for the safety and efficacy of pulmonary delivery systems. In vitro approaches for investigating pulmonary drug metabolism were described, including subcellular fractions, cell culture models and lung slices as the main available in vitro methods. In addition, in silico studies are promising alternatives that use specific software to predict pulmonary drug metabolism, determine whether a molecule will react with a metabolic enzyme, the site of metabolism (SoM) and the result of this interaction. They can be used in an integrated approach to delineate the major cytochrome P450 (CYP) isoforms to rationalize the use of in vivo methods. A case study about a combination of experimental and computational approaches was done using fluticasone propionate as an example. The results of three tested software, RSWebPredictor, SMARTCyp and XenoSite, demonstrated greater probability of the fluticasone propionate being metabolized by CYPs 3A4 at the S1 atom of 5-S-fluoromethyl carbothioate group. As the in vitro studies were not able to directly detect pulmonary metabolites, those alternatives in silico methods may reduce animal testing efforts, following the principle of 3Rs (Replacement, Reduction and Refinement), and contribute to the evaluation of pharmacological efficacy and safety profiles of new drugs in development.


Subject(s)
Cytochrome P-450 Enzyme System , Lung , Animals , Pharmaceutical Preparations/metabolism , Lung/metabolism , Cytochrome P-450 Enzyme System/metabolism , Administration, Inhalation , Fluticasone
4.
An Acad Bras Cienc ; 94(suppl 3): e20211287, 2022.
Article in English | MEDLINE | ID: mdl-36197362

ABSTRACT

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are the latest class of drugs approved to treat type 2 DM (T2DM). Although adverse effects are often caused by a metabolite rather than the drug itself, only the safety assessment of disproportionate drug metabolites is usually performed, which is of particular concern for drugs of chronic use, such as SGLT2i. Bearing this in mind, in silico tools are efficient strategies to reveal the risk assessment of metabolites, being endorsed by many regulatory agencies. Thereby, the goal of this study was to apply in silico methods to provide the metabolites toxicity assessment of the SGLT2i. Toxicological assessment from SGLT2i metabolites retrieved from the literature was estimated using the structure and/or statistical-based alert implemented in DataWarrior and ADMET predictorTM softwares. The drugs and their metabolites displayed no mutagenic, tumorigenic or cardiotoxic risks. Still, M1-2 and M3-1 were recognized as potential hepatotoxic compounds and M1-2, M1-3, M3-1, M3-2, M3-3 and M4-3, were estimated to have very toxic LD50 values in rats. All SGLT2i and the metabolites M3-4, M4-1 and M4-2, were predicted to have reproductive toxicity. These results support the awareness that metabolites may be potential mediators of drug-induced toxicities of the therapeutic agents.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Animals , Rats , Risk Assessment , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/toxicity
5.
J Cell Biochem ; 123(7): 1259-1277, 2022 07.
Article in English | MEDLINE | ID: mdl-35644025

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Genome-Wide Association Study , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Rivastigmine/therapeutic use
6.
Curr Top Med Chem ; 22(12): 973-991, 2022.
Article in English | MEDLINE | ID: mdl-35524665

ABSTRACT

BACKGROUND: Microbial resistance has become a worldwide public health problem and may lead to morbidity and mortality in affected patients. OBJECTIVES: Therefore, this work aimed to evaluate the antibacterial activity of quinone-4- oxoquinoline derivatives. METHODS: These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and in silico assays. RESULTS: The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities and, in some cases, were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion, and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane, and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION: The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.


Subject(s)
Gram-Negative Bacteria , Quinolones , 4-Quinolones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Humans , Microbial Sensitivity Tests , Quinolones/pharmacology , Quinones/pharmacology , Structure-Activity Relationship
7.
PLoS Negl Trop Dis ; 15(11): e0009951, 2021 11.
Article in English | MEDLINE | ID: mdl-34780470

ABSTRACT

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.


Subject(s)
Antiprotozoal Agents/therapeutic use , Chalcone/metabolism , Chalcone/pharmacology , Cytosol/drug effects , Leishmania/drug effects , Peroxidases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacology , Cells, Cultured , Chalcone/administration & dosage , Chalcone/analogs & derivatives , Cytosol/enzymology , Cytosol/parasitology , Drug Discovery , Humans , Leishmania/classification , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Macrophages/drug effects , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Peroxidases/metabolism , Protozoan Proteins/metabolism
8.
An Acad Bras Cienc ; 92(2): e20191445, 2020.
Article in English | MEDLINE | ID: mdl-32785428

ABSTRACT

Sildenafil is a potent selective inhibitor of phosphosdiesterase-5 previously used in erectile dysfunction and subsequently approved in 2005 for pulmonary arterial hypertension treatment. Since oral administration of sildenafil shows pharmacokinetic problems with mean absolute bioavailability of 41%, the goal of this work was to develop a novel sildenafil self-emulsifying drug delivery system (SEDDS) for oral absorption improvement and management of dosage. One pharmaceutical solution and four SEDDS containing sildenafil were successfully obtained and SEDDS formed O/W nanoemulsion with droplet size less than 300 nm. The stability studies evidenced that the SEDDS containing 3.3% w/w of sildenafil yielded the best results. The safety of 2-pyrrolidone/isobutanol in oral formulations was assessed in mice and no lethality was achieved in the placebo groups with LD50 of 490 mg/Kg for SEDDS II-3.3, suggesting it as a safe excipient for humans. Therewithal, in silico studies using PBPK models provided the pharmacokinetic profile of sildenafil SEDDS. Subsequently, in silico evaluation indicated that the sildenafil SEDDS droplet size influenced its bioavailability, enhancing absorption, assuring a good pharmacokinetic profile. These findings suggest that the formulations developed here presented the potential to enhance drug oral absorption with the possibility to control drug dosage as they are liquid pharmaceutical formulations.


Subject(s)
Pulmonary Arterial Hypertension , Animals , Chemistry, Pharmaceutical , Drug Delivery Systems , Emulsions , Humans , Mice , Sildenafil Citrate
9.
Biomed Chromatogr ; 34(7): e4832, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32190911

ABSTRACT

Injectable solutions containing epinephrine (EPI) and norepinephrine (NE) are not stable, and their degradation is favored mainly by the oxidation of catechol moiety. As studies of these drugs under forced degradation conditions are scarce, herein, we report the identification of their degradation products (DP) in anesthetic formulations by the development of stability-indicating HPLC method. Finally, the risk assessment of the major degradation products was evaluated using in silico toxicity approach. HPLC method was developed to obtain a higher selectivity allowing adequate elution for both drugs and their DPs. The optimized conditions were developed using a C18 HPLC column, sodium 1-octanesulfonate, and methanol (80:20, v/v) as mobile phase, with a flow rate of 1.5 mL/min, UV detection at 199 nm. The analysis of standard solutions with these modifications resulted in greater retention time for EPI and NE, which allow the separation of these drugs from their respective DPs. Then, five DPs were identified and analyzed by in silico studies. Most of the DPs showed important alerts as hepatotoxicity and mutagenicity. To the best of our acknowledgment, this is the first report of a stability-indicating HPLC method that can be used with formulations containing catecholamines.


Subject(s)
Anesthetics , Chromatography, High Pressure Liquid/methods , Epinephrine , Norepinephrine , Anesthesia, Dental , Anesthetics/analysis , Anesthetics/chemistry , Anesthetics/toxicity , Animals , Computer Simulation , Drug Stability , Epinephrine/analysis , Epinephrine/chemistry , Epinephrine/toxicity , Limit of Detection , Linear Models , Mice , Norepinephrine/analysis , Norepinephrine/chemistry , Norepinephrine/toxicity , Rats , Reproducibility of Results
10.
J Cell Biochem ; 121(2): 1114-1125, 2020 02.
Article in English | MEDLINE | ID: mdl-31478225

ABSTRACT

Infectious diseases are serious public health problems, affecting a large portion of the world's population. A molecule that plays a key role in pathogenic organisms is trehalose and recently has been an interest in the metabolism of this molecule for drug development. The trehalose-6-phosphate synthase (TPS1) is an enzyme responsible for the biosynthesis of trehalose-6-phosphate (T6P) in the TPS1/TPS2 pathway, which results in the formation of trehalose. Studies carried out by our group demonstrated the inhibitory capacity of T6P in the TPS1 enzyme from Saccharomyces cerevisiae, preventing the synthesis of trehalose. By in silico techniques, we compiled sequences and experimentally determined structures of TPS1. Sequence alignments and molecular modeling were performed. The generated structures were submitted in validation of algorithms, aligned structurally and analyzed evolutionarily. Molecular docking methodology was applied to analyze the interaction between T6P and TPS1 and ADMET properties of T6P were analyzed. The results demonstrated the models created presented sequence and structural similarities with experimentally determined structures. With the molecular docking, a cavity in the protein surface was identified and the molecule T6P was interacting with the residues TYR-40, ALA-41, MET-42, and PHE-372, indicating the possible uncompetitive inhibition mechanism provided by this ligand, which can be useful in directing the molecular design of inhibitors. In ADMET analyses, T6P had acceptable risk values compared with other compounds from World Drug Index. Therefore, these results may present a promising strategy to explore to develop a broad-spectrum antibiotic of this specific target with selectivity, potency, and reduced side effects, leading to a new way to treat infectious diseases like tuberculosis and candidiasis.


Subject(s)
Drug Design , Enzyme Inhibitors/metabolism , Glucosyltransferases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Computer Simulation , Enzyme Inhibitors/chemistry , Glucosyltransferases/chemistry , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Sugar Phosphates/chemistry , Trehalose/chemistry , Trehalose/metabolism
11.
Curr Top Med Chem ; 20(3): 192-208, 2020.
Article in English | MEDLINE | ID: mdl-31868148

ABSTRACT

BACKGROUND: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. OBJECTIVE: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. METHODS: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and ß-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C - APT, 1H x 1H - COSY, HSQC and HMBC], IR and mass spectrometry analysis. RESULTS: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. CONCLUSION: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indolequinones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Humans , Indolequinones/chemical synthesis , Indolequinones/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure
12.
Eur J Med Chem ; 150: 920-929, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29602038

ABSTRACT

Leishmaniasis is a group of infectious neglected tropical diseases caused by more than 20 pathogenic species of Leishmania sp. Due to the limitations of the current treatments available, chalcone moiety has been drawn with a lot of attention due to the simple chemistry and synthesis, being reported with antileishmanial activity in particular against amastigote form. This review aims to provide an overview towards antileishmanial activity of chalcones derivatives against amastigote form for Leishmania major, L. amazonensis, L. panamensis, L. donovani and L. infantum as well as their structure-activity relationship (SAR), molecular targets and in silico ADMET evaluation. In this way, it is expected that this review may support the research and development of new promising chalcones candidates a leishmanicidal drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Chalcone/pharmacology , Leishmania/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
13.
Mem. Inst. Oswaldo Cruz ; 112(4): 299-308, Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-841780

ABSTRACT

BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.


Subject(s)
Plasmodium falciparum/drug effects , Electron Transport Complex III/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Naphthoquinones/chemistry , Sequence Analysis, Protein
14.
Mem Inst Oswaldo Cruz ; 112(4): 299-308, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28327793

ABSTRACT

BACKGROUND: Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES: The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS: We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS: Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS: Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Electron Transport Complex III/chemistry , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Plasmodium falciparum/drug effects , Sequence Analysis, Protein
15.
Bioorg Med Chem Lett ; 27(2): 314-318, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27914800

ABSTRACT

Human kallikrein 1 (KLK1) is the most extensively studied member of this family and plays a major role in inflammation processes. From Ugi multicomponent reactions, isomannide-based peptidomimetic 10 and 13 where synthesized and showed low micromolar values of IC50 for KLK1 The most active compound (10) presented competitive mechanism, with three structural modifications important to interact with active site residues which corroborates its KLK1 inhibition. Finally, the most active compound also showed good ADMET profile, which indicates compound 10 as a potential hit in the search for new KLK1 inhibitors with low side effects.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Kallikreins/antagonists & inhibitors , Peptidomimetics/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Kallikreins/metabolism , Models, Molecular , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Structure-Activity Relationship
16.
Int J Nanomedicine ; 10: 5865-80, 2015.
Article in English | MEDLINE | ID: mdl-26425087

ABSTRACT

Alginate-dextran sulfate-based particles obtained by emulsification/internal gelation technology can be considered suitable carriers for oral insulin delivery. A rational study focused on the emulsification and particle recovery steps was developed in order to reduce particles to the nanosize range while keeping insulin bioactivity. There was a decrease in size when ultrasonication was used during emulsification, which was more pronounced when a cosurfactant was added. Ultrasonication add-on after particle recovery decreased aggregation and led to a narrower nanoscale particle-size distribution. Insulin encapsulation efficiency was 99.3%±0.5%, attributed to the strong pH-stabilizing electrostatic effect between insulin and nanoparticle matrix polymers. Interactions between these polymers and insulin were predicted using molecular modeling studies through quantum mechanics calculations that allowed for prediction of the interaction model. In vitro release studies indicated well-preserved integrity of nanoparticles in simulated gastric fluid. Circular dichroism spectroscopy proved conformational stability of insulin and Fourier transform infrared spectroscopy technique showed rearrangements of insulin structure during processing. Moreover, in vivo biological activity in diabetic rats revealed no statistical difference when compared to nonencapsulated insulin, demonstrating retention of insulin activity. Our results demonstrate that alginate-dextran sulfate-based nanoparticles efficiently stabilize the loaded protein structure, presenting good physical properties for oral delivery of insulin.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Emulsions , Gels/chemistry , Hypoglycemic Agents/pharmacokinetics , Insulin/pharmacokinetics , Nanoparticles/chemistry , Ultrasonics/methods , Alginates/chemistry , Animals , Dextran Sulfate/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Male , Rats , Rats, Wistar
17.
Molecules ; 20(6): 10689-704, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26065834

ABSTRACT

Herpes simplex virus infections have been described in the medical literature for centuries, yet the the drugs available nowadays for therapy are largely ineffective and low oral bioavailability plays an important role on the inefficacy of the treatments. Additionally, the details of the inhibition of Herpes Virus type 1 are still not fully understood. Studies have shown that several viruses encode one or more proteases required for the production new infectious virions. This study presents an analysis of the interactions between HSV-1 protease and benzoxazinone derivatives through a combination of structure-activity relationships, comparative modeling and molecular docking studies. The structure activity relationship results showed an important contribution of hydrophobic and polarizable groups and limitations for bulky groups in specific positions. Two Herpes Virus type 1 protease models were constructed and compared to achieve the best model which was obtained by MODELLER. Molecular docking results pointed to an important interaction between the most potent benzoxazinone derivative and Ser129, consistent with previous mechanistic data. Moreover, we also observed hydrophobic interactions that may play an important role in the stabilization of inhibitors in the active site. Finally, we performed druglikeness and drugscore studies of the most potent derivatives and the drugs currently used against Herpes virus.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/enzymology , Models, Molecular , Peptide Hydrolases/chemistry , Binding Sites , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Molecular Docking Simulation , Molecular Weight , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Structure-Activity Relationship
18.
Molecules ; 20(5): 8072-93, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25951004

ABSTRACT

Tuberculosis (TB) remains a serious public health problem aggravated by the emergence of M. tuberculosis (Mtb) strains resistant to multiple drugs (MDR). Delay in TB treatment, common in the MDR-TB cases, can lead to deleterious life-threatening inflammation in susceptible hyper-reactive individuals, encouraging the discovery of new anti-Mtb drugs and the use of adjunctive therapy based on anti-inflammatory interventions. In this study, a series of forty synthetic chalcones was evaluated in vitro for their anti-inflammatory and antimycobacterial properties and in silico for pharmacokinetic parameters. Seven compounds strongly inhibited NO and PGE2 production by LPS-stimulated macrophages through the specific inhibition of iNOS and COX-2 expression, respectively, with compounds 4 and 5 standing out in this respect. Four of the seven most active compounds were able to inhibit production of TNF-α and IL-1ß. Chalcones that were not toxic to cultured macrophages were tested for antimycobacterial activity. Eight compounds were able to inhibit growth of the M. bovis BCG and Mtb H37Rv strains in bacterial cultures and in infected macrophages. Four of them, including compounds 4 and 5, were active against a hypervirulent clinical Mtb isolate as well. In silico analysis of ADMET properties showed that the evaluated chalcones displayed satisfactory pharmacokinetic parameters. In conclusion, the obtained data demonstrate that at least two of the studied chalcones, compounds 4 and 5, are promising antimycobacterial and anti-inflammatory agents, especially focusing on an anti-tuberculosis dual treatment approach.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antitubercular Agents/pharmacology , Chalcones/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Cell Line , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Interleukin-1beta/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Nitrogen Oxides/metabolism , Tuberculosis/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Molecules ; 19(5): 6651-70, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24858098

ABSTRACT

As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10-18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor/drug effects , Cell Membrane/drug effects , Chemistry Techniques, Synthetic , Computer Simulation , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Erythrocytes/drug effects , Hemolytic Agents/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Molecular Structure , Quinolones/chemistry , Stomach Neoplasms/drug therapy
20.
J Pharm Sci ; 102(11): 4057-64, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23983168

ABSTRACT

The treatment of benign prostatic hyperplasia can be accomplished by the use of different drugs including, doxazosin, an α-1 adrenergic antagonist, and finasteride (FIN), a 5-α reductase inhibitor. Traditionally, treatments using these drugs have been administered as either a mono or combination therapy by the oral route. A transdermal delivery system optimized for doxazosin and FIN combination therapy would provide increased patient adherence and facilitate dose adjustment. Doxazosin base (DB) was prepared from doxazosin mesylate and characterized together with FIN, by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The permeation enhancers, azone and lauric acid, and the gelling agents, hydroxypropyl cellulose (HPC) and Poloxamer 407 (P407), were evaluated to determine their ability to promote in vitro permeation of drugs through the pig ear epidermis. Successful preparation of DB was confirmed by evaluating the XRD, DSC, and NMR patterns and in vitro studies revealed that 3% (w/w) azone was the best permeation enhancer. When P407 gel was compared with HPC gel, it showed reduced lag time and promoted higher permeation of both drugs. This may be because of the interactions of the former with the stratum corneum, which disorganizes the lipid structure and consequently promotes higher drug permeation.


Subject(s)
5-alpha Reductase Inhibitors/administration & dosage , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Doxazosin/administration & dosage , Finasteride/administration & dosage , Pharmaceutical Vehicles/metabolism , 5-alpha Reductase Inhibitors/pharmacokinetics , Administration, Cutaneous , Adrenergic alpha-1 Receptor Antagonists/pharmacokinetics , Animals , Azepines/metabolism , Doxazosin/pharmacokinetics , Finasteride/pharmacokinetics , Humans , Lauric Acids/metabolism , Male , Permeability , Prostatic Hyperplasia/drug therapy , Skin Absorption , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...