Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e30748, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774319

ABSTRACT

The physical and mechanical properties of biopolymers can be improved by heating technologies. In this research, we improved the properties of Polyvinyl alcohol (PVA)/Uncaria gambir extract (UGE) blend films by post-heating method. After post-heating, the blend film exhibited higher resistance to UV light and improved contact angle performance, while water vapor permeability and moisture absorption decreased. The tensile strength and toughness of the PVA/UGE blend film with a post-heating duration of 40 min were 68.8 MPa and 57.7 MPa, respectively, an increase of 131 % and 127 %, compared to films without post-heating. This facile and cost-effective fabrication method, with environmentally friendly properties, can be applied to biodegradable PVA/UGE blend films to achieve desired properties for optical devices or food packaging materials.

2.
Int J Biol Macromol ; 268(Pt 1): 131845, 2024 May.
Article in English | MEDLINE | ID: mdl-38677695

ABSTRACT

Researchers have begun focusing on developing biodegradable materials, such as natural fiber/polymer composites (NFPC), since the growing of environmental concerns related to waste management. One crucial aspect that must be established in the development of these composites is their water-absorption behavior. This paper examines the water absorption (WA) behavior of NFPC, with a specific emphasis on natural fiber/polylactic acid (PLA) composites. It discusses processes and numerous aspects related to this behavior, based on recent published research. This review analyzes the influence of several factors, such as the loading of natural fiber, the combination of different natural fibers, the methods used in manufacturing, and the temperature of the water, on the WA behavior of natural fiber/PLA composites. It also explores how WA affects the properties of these composites. In addition, this review also presented techniques for improving the WA resistance of the composites. This review paper provides researchers with insights into the WA behavior of the composites, aiming to facilitate the development of a versatile and eco-friendly material that may effectively address waste disposal challenges.


Subject(s)
Polyesters , Water , Polyesters/chemistry , Water/chemistry , Temperature , Absorption, Physicochemical
3.
Polymers (Basel) ; 15(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514503

ABSTRACT

Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.

4.
Polymers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771944

ABSTRACT

Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication. TOBC powders are sonicated with various powers of 250, 500, and 750 W for 20 min without any other substance. It was proved that increasing the ultrasonication power level resulted in a significant improvement in the properties of the film. The ultrasonication of 750 W increased tensile strength by 85%, toughness by 308%, light transmittance by 542%, and electrical conductivity by 174% compared to the nonsonicated film. A light-emitting diode connected to a power source through this sonicated film was much brighter than that connected via a nonsonicated film. For the first time, this study reports the preparation of electrically conductive, transparent, strong, and bendable pure TOBC films by increasing ultrasonic power for environmentally friendly electronic devices application.

5.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267697

ABSTRACT

There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.

6.
Int J Biol Macromol ; 208: 88-96, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35304197

ABSTRACT

This work characterized bacterial cellulose (BC)/Uncaria gambir (G) biocomposite film prepared with ultrasonication treatment. Films were prepared from BC powder suspensions in distilled water without and with various loadings (0.05 g, 0.1 g, 0.2 g, 2 g) of G powder then treated using an ultrasonic probe at 1000 W for one hour. The results revealed that the ultrasonication treatment of the suspension greatly increased tensile strength (TS), elongation at break (EB), and toughness (TN) of a BC film by 3097%, 644%, and 32,600%, respectively, compared to non-sonicated BC film. After adding 0.05 g G into the sonicated BC powder suspension, TS, EB, and TN of the biocomposite film were improved to 105.6 MPa, 14.3%, and 8.7 MJ/m3, respectively. The addition of the G increased in antimicrobial activity of the film. This study indicates that biocomposite film is potentially useful for nanopaper production with good antimicrobial and high tensile properties.


Subject(s)
Uncaria , Anti-Bacterial Agents/pharmacology , Cellulose , Polymers , Powders , Tensile Strength
7.
Polymers (Basel) ; 13(8)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919530

ABSTRACT

Over recent years, enthusiasm towards the manufacturing of biopolymers has attracted considerable attention due to the rising concern about depleting resources and worsening pollution. Among the biopolymers available in the world, polylactic acid (PLA) is one of the highest biopolymers produced globally and thus, making it suitable for product commercialisation. Therefore, the effectiveness of natural fibre reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. The type of fibre used in fibre/matrix adhesion is very important because it influences the biocomposites' mechanical properties. Besides that, an outline of the present circumstance of natural fibre-reinforced PLA 3D printing, as well as its functions in 4D printing for applications of stimuli-responsive polymers were also discussed. This research paper aims to present the development and conducted studies on PLA-based natural fibre bio-composites over the last decade. This work reviews recent PLA-derived bio-composite research related to PLA synthesis and biodegradation, its properties, processes, challenges and prospects.

8.
Carbohydr Polym ; 240: 116287, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32475568

ABSTRACT

Transparent film with high thermal resistance and antimicrobial properties has many applications in the food packaging industry particularly packaging for reheatable food. This work investigates the effects of heat treatment on the thermal resistance, stability of transparency and antimicrobial activity of transparent cellulose film. The film from ginger nanocellulose fibers was prepared with chemicals and ultrasonication. The dried film was heated at 150 °C for 30, 60, 90, or 120 min. The unheated and sonicated film had the lowest crystallinity index and the lowest thermal properties. After heating, the film became brownish-yellow resulting from thermal oxidation. The reheated film had higher thermal resistance than unheated film. Heating led to further relaxation of cellulose network evidenced by shifting of the XRD peak positions toward lower values. The antimicrobial activity decreased due to heating. Average opacity value increases after short heating durations. It was relatively stable for further heating.


Subject(s)
Anti-Infective Agents , Cellulose , Nanofibers , Zingiber officinale , Bacteria/growth & development , Candida albicans/growth & development , Food Packaging , Hot Temperature , Plant Tubers
9.
Int J Biol Macromol ; 135: 591-599, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31132440

ABSTRACT

With the increasing demand for simple, efficient, environmentally friendly preparation methods to produce cellulose nanofibers for reinforcing a biodegradable film is increased, the role of nanofibers from the pure cellulose produced by bacteria becomes more important. This work characterized bacterial cellulose nanofibers disintegrated using a high shear homogenizer. These nanofibers, in 2.5, 5, and 7.5 mL suspensions, were mixed with PVA gel using ultrasonication. The resulting dried bionanocomposite film was also characterized. Adding nanofiber significantly increases (p ≤ 0.05) on tensile strength, thermal resistance, water vapor impermeability, and moisture resistance of PVA film but not strain at break. Tensile strength, tensile modulus, and elongation at the break of the 7.5 mL nanofiber reinforced film were 37.9 MPa (increased by 38%), 547.8 MPa (increased by 26%), and 10.7% (decreased from 17.2% for pure PVA), respectively compared to pure PVA. Transparency decreases slightly with increased nanofiber content. These properties indicate that this bionanocomposite film has potential in food packaging applications.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Sonication , Optical Phenomena , Permeability , Steam , Temperature , Tensile Strength
10.
Carbohydr Polym ; 206: 593-601, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30553362

ABSTRACT

This paper reports the characterization of polyvinyl alcohol (PVA)/cassava starch biocomposites. The cassava starch gel with or without ultrasonic probe treatment was mixed with PVA gel then short bacterial cellulose fibers were added. The presence of the sonicated starch gel in the PVA resulted in low thermal and moisture resistance, and low transparency of the blend film. After adding the fibers thermal and moisture resistance of the sonicated biocomposite increased due to stronger hydrogen bonding between the fibers and the matrix. Tensile strength of sonicated biocomposite with 10 g fibers increased 215% compared to the sonicated blend. However, addition of the fibers to the non-sonicated blend did not significantly increase mechanical and thermal properties or moisture resistance of the biocomposite. Opacity of the non-sonicated biocomposite was lower than that of the sonicated one.

11.
Int J Biol Macromol ; 120(Pt A): 578-586, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30165147

ABSTRACT

This study focuses on the synthesis and characterization of CNF obtained from ramie fibers reinforced with nano PCC tapioca starch hybrid composites. CNF-ramie was prepared by using chemical-ultrasonication process, while the nano-composites were made by utilizing a casting solution and glycerol as plasticizers. Physical, mechanical, and thermal properties are characterized using SEM, FTIR, XRD, TGA, and the morphology of composite samples have been analyzed through SEM. The results show that the CS/4CNF/6PCC sample has the highest tensile strength and crystallinity index of 12.84 Mpa and 30.76% respectively. The addition of CNF-ramie and PCC in nanocomposites has increased moisture absorption, crystallinity, and thermal stability properties. The SEM micrographs indicate that the CNF-ramie is bound in a matrix and the PCC is weakly bound in the tapioca starch matrix mainly due to the calcium clumps in the matrix.


Subject(s)
Cellulose/chemistry , Manihot/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Starch/chemistry , Calcium/chemistry , Glycerol/chemistry , Humans , Materials Testing , Nanocomposites/ultrastructure , Nanofibers/ultrastructure , Plasticizers/chemistry , Sonication , Tensile Strength
12.
Int J Biol Macromol ; 116: 1214-1221, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29772335

ABSTRACT

This paper reported the results of the characterization of jicama (Pachyrhizus erosus) starch based biocomposite reinforced with varied nanofiber fractions, i.e. 35.4, 70.8 and 106.2 µg per 10 g of starch. The nanofiber was isolated from oil palm empty fruit bunches. During preparation, the biocomposite in form of gel was sonicated using an ultrasonic probe at various powers, i.e. 0, 480, 600, 720 watt at 20 kHz for 5 min. The results show that ultrasonication results in a significant improvement in biocomposite properties for each of the nanofiber fractions. The tensile strength, moisture resistance of the 35.4 µg nanofibers biocomposite increase significantly 278, 11% respectively after 600 watt ultrasonication. Field emission scanning electron microscopy of the fracture surface of the film showed ultrasonication resulted in it becoming smoother and more compact. These results indicate that ultrasonication improves the performance of the film.


Subject(s)
Nanofibers/chemistry , Pachyrhizus/chemistry , Starch/chemistry , Ultrasonic Waves
13.
Carbohydr Polym ; 191: 161-167, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29661304

ABSTRACT

As more applications for nano-sized natural particles are discovered, simple, environmentally friendly ways to produce these particles become more important. This work prepares and characterizes nano-size bacterial cellulose particles using ultrasonication. Pellicle from nata de coco containing nanofibers was broken up in an electrical blender, then sonicated using an ultrasonic probe at 20 kHz and 3 W/mL for 30, 60 and 90 min. Transmission electron microscope observations indicate the particles become nano-sized after 60 min ultrasound. The maximum decomposition temperature before sonication was 373 °C, decreased to 357 °C after 60 min ultrasonication. Moisture absorption of the 90 min sonicated particles film is 60% slower compared to non-sonicated particles. After ultrasonication, the crystallinity index of the cellulose decreases. The functional groups of non-sonicated and sonicated cellulose remain the same. This study promotes a potential method of fabrication of nano-sized particles from pure bacterial cellulose.

14.
Int J Biol Macromol ; 108: 167-176, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29191420

ABSTRACT

This paper characterizes properties of biocomposite sonicated during gelatinization. The biocomposite consisted of tapioca starch based plastic reinforced by 10% volume fraction of water hyacinth fiber (WHF). During gelatinization, the biocomposite was poured into a rectangular glass mold then vibrated in an ultrasonic bath using 40kHz, 250W for varying durations (0, 15, 30, and 60min). The resulting biocomposite was then dried in a drying oven at 50°C for 20h. The results of this study indicate that a biocomposite with optimal properties can be produced using tapioca starch and WHF if the gelatinizing mixture is exposed to ultrasound vibration for 30min. After this vibration duration, tensile strength (TS) and tensile modulus (TM) increased 83% and 108%. A further 60min vibration only increased the TS at 13% and TM at 23%. Moisture resistance of the biocomposite after vibration increased by around 25% reaching a maximal level after 30min. Thermal resistance of the vibrated biocomposites was also increased.


Subject(s)
Dietary Fiber , Eichhornia/chemistry , Gelatin , Manihot/chemistry , Sonication , Starch , Water , Mechanical Phenomena , Phytochemicals/chemistry , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Thermogravimetry , X-Ray Diffraction
15.
Ultrason Sonochem ; 40(Pt A): 697-702, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946475

ABSTRACT

This article reports effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. The bio-composite consists of mixing of both the tapioca starch based bioplastic and oil palm empty fruit bunch (OPEFB) fibers with high volume fraction. Gelatinization of the bio-composite sample was poured into a rectangular glass mold placed then in an ultrasonic bath with 40kHz, and 250watt in different duration for 0, 15, 30, 60min respectively. The results show that vibration during gelatinization has changed the characterisation of the bio-composite. SEM photograph displayed different fracture surface of tensile sample. For vibration duration of 60min, tensile strength (TM), and tensile modulus (TM) was improved to 64.4, 277.4%, respectively, meanwhile strain was decreased to 35.1% in comparison without vibration. Fourier Transform Infrared Spectroscopy (FTIR), and XRD diffraction of the bio-composite has changed due to various vibration duration. Moisture absorption of the vibrated bio-composite was lower than that of the untreated one.


Subject(s)
Sonication , Vibration , Arecaceae/chemistry , Gels , Stress, Mechanical , Tensile Strength , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...