Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36432289

ABSTRACT

Surface modification of nanoparticles with different stabilizers is one of the most widely used methods to improve their stability and applicability. Silver nanoparticle (AgNPs) dispersions with biologically active stabilizers have great potential as plant protection products with synergetic antimicrobial properties and sufficient stability in terms of field application. The obtained AgNPs dispersions have the ability to enhance growth, increase yield and give better protection to various crops. At the same time, it is important to determine the fate, stability, and ecotoxicity of the applied nanosized products. The toxic effects of AgNPs dispersions and their constituents, organic stabilizers and additives, were evaluated using a phenotypic sea urchin embryo assay. Certain AgNPs dispersions with organic stabilizers demonstrated sufficient stability, even in seawater. The toxicity of the AgNPs decreased with the increasing tendency to agglomerate in seawater. Furthermore, the applied stabilizers were hazardous towards sea urchin embryos. They caused pronounced embryo abnormalities at 0.25-2.6 mg/L concentrations. AgNPs exhibited a lethal effect at concentrations that were equal to the MLC or exceeded the MEC of their stabilizers. Silver ions were more toxic towards sea urchin embryos than AgNPs.

2.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070324

ABSTRACT

Metal-organic frameworks (MOFs) demonstrate unique properties, which are prospective for drug delivery, catalysis, and gas separation, but their biomedical applications might be limited due to their obscure interactions with the environment and humans. It is important to understand their toxic effect on nature before their wide practical application. In this study, HKUST-1 nanoparticles (Cu-nanoMOF, Cu3(btc)2, btc = benzene-1,3,5-tricarboxylate) were synthesized by the microwave (MW)-assisted ionothermal method and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) techniques. The embryotoxicity and acute toxicity of HKUST-1 towards embryos and adult zebrafish were investigated. To gain a better understanding of the effects of Cu-MOF particles towards Danio rerio (D. rerio) embryos were exposed to HKUST-1 nanoparticles (NPs) and Cu2+ ions (CuSO4). Cu2+ ions showed a higher toxic effect towards fish compared with Cu-MOF NPs for D. rerio. Both forms of fish were sensitive to the presence of HKUST-1 NPs. Estimated LC50 values were 2.132 mg/L and 1.500 mg/L for zebrafish embryos and adults, respectively. During 96 h of exposure, the release of copper ions in a stock solution and accumulation of copper after 96 h were measured in the internal organs of adult fishes. Uptake examination of the major internal organs did not show any concentration dependency. An increase in the number of copper ions in the test medium was found on the first day of exposure. Toxicity was largely restricted to copper release from HKUST-1 nanomaterials structure into solution.


Subject(s)
Copper , Embryo, Nonmammalian/embryology , Nanoparticles/toxicity , Organometallic Compounds , Zebrafish/embryology , Animals , Copper/pharmacokinetics , Copper/toxicity , Organometallic Compounds/pharmacokinetics , Organometallic Compounds/toxicity
3.
Nanomaterials (Basel) ; 11(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917754

ABSTRACT

The use of different nanoparticles (NPs) is growing every year since discoveries of their unique properties. The wide use of nanomaterials has raised concerns about their safety and possible accumulation in the aquatic environment. Mussels are being considered as one of the most suitable organisms for bioaccumulation monitoring. Within our study, we focused on developing the method that can be applied in field studies of ecotoxicity and can be nondestructive and informative at early times of exposure, while at the same time being based on changes of physiological parameters of fresh water mussels. The changes in the cardiovascular and neural systems of mollusks (Anodonta anatina and Unio tumidus) were measured as biomarkers of toxic effects. Different monometallic and bimetallic NPs, silicon NPs with various ligands were applied as test substances. Changes in cardiovascular and neural functions were in good correlation with accumulation tests for all tested NPs.

5.
J Hazard Mater ; 347: 89-94, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29291521

ABSTRACT

As the worldwide application of silver nanomaterials in commercial products increases every year, and concern about the environmental risks of such nanoparticles also grows. A clear understanding of how different characteristics of nanoparticles contribute in their toxic behavior to organisms are imperative for predicting and control nanotoxicity. Within our research, we investigated the toxic effect of two types of silver nanoparticles (spherical and flat Ag nanoparticles) on zebrafish (Danio rerio) embryos. Particular interest was paid to proper characterization of Ag nanoparticles initially and during the experiment. A proper test medium was found and used for ecotoxicity evaluation. The behavior of flat silver nanoparticles with respect to embryos of zebrafish was analyzed and compared to the ecotoxicity of silver ionic form (AgNO3). Both types of nanoparticles showed a more pronounced toxic effect to Danio rerio embryos than silver ions (AgNO3), while silver nanoplates were more harmful than Ag nanospheres. While previous investigations showed that toxicity of Ag nanoparticles can be explained by the presence of Ag+ in solution of silver nanoparticles, our results demonstrate that the harmful effects of nanosilver may be associated with silver nanoparticles themselves than with ionic silver released into solution.


Subject(s)
Embryo, Nonmammalian/drug effects , Metal Nanoparticles/toxicity , Silver/toxicity , Zebrafish/embryology , Animals , Embryo, Nonmammalian/embryology
6.
Food Chem Toxicol ; 112: 507-517, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28802948

ABSTRACT

Inorganic nanomaterials have become one of the new areas of modern knowledge and technology and have already found an increasing number of applications. However, some nanoparticles show toxicity to living organisms, and can potentially have a negative influence on environmental ecosystems. While toxicity can be determined experimentally, such studies are time consuming and costly. Computational toxicology can provide an alternative approach and there is a need to develop methods to reliably assess Quantitative Structure-Property Relationships for nanomaterials (nano-QSPRs). Importantly, development of such models requires careful collection and curation of data. This article overviews freely available nano-QSPR models, which were developed using the Online Chemical Modeling Environment (OCHEM). Multiple data on toxicity of nanoparticles to different living organisms were collected from the literature and uploaded in the OCHEM database. The main characteristics of nanoparticles such as chemical composition of nanoparticles, average particle size, shape, surface charge and information about the biological test species were used as descriptors for developing QSPR models. QSPR methodologies used Random Forests (WEKA-RF), k-Nearest Neighbors and Associative Neural Networks. The predictive ability of the models was tested through cross-validation, giving cross-validated coefficients q2 = 0.58-0.80 for regression models and balanced accuracies of 65-88% for classification models. These results matched the predictions for the test sets used to develop the models. The proposed nano-QSPR models and uploaded data are freely available online at http://ochem.eu/article/103451 and can be used for estimation of toxicity of new and emerging nanoparticles at the early stages of nanomaterial development.


Subject(s)
Metal Nanoparticles/toxicity , Models, Chemical , Computational Biology , Machine Learning , Metal Nanoparticles/chemistry , Neural Networks, Computer , Oxides/chemistry , Quantitative Structure-Activity Relationship , Reproducibility of Results , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...