Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34873062

ABSTRACT

Understanding how rivers adjust to the sediment load they carry is critical to predicting the evolution of landscapes. Presently, however, no physically based model reliably captures the dependence of basic river properties, such as its shape or slope, on the discharge of sediment, even in the simple case of laboratory rivers. Here, we show how the balance between fluid stress and gravity acting on the sediment grains, along with cross-stream diffusion of sediment, determines the shape and sediment flux profile of laminar laboratory rivers that carry sediment as bedload. Using this model, which reliably reproduces the experiments without any tuning, we confirm the hypothesis, originally proposed by Parker [G. Parker, J. Fluid Mech 89, 127-146 (1978)], that rivers are restricted to exist close to the threshold of sediment motion (within about 20%). This limit is set by the fluid-sediment interaction and is independent of the water and sediment load carried by the river. Thus, as the total sediment discharge increases, the intensity of sediment flux (sediment discharge per unit width) in a river saturates, and the river can transport more sediment only by widening. In this large discharge regime, the cross-stream diffusion of momentum in the flow permits sediment transport. Conversely, in the weak transport regime, the transported sediment concentrates around the river center without significantly altering the river shape. If this theory holds for natural rivers, the aspect ratio of a river could become a proxy for sediment discharge-a quantity notoriously difficult to measure in the field.

2.
Soft Matter ; 17(47): 10723-10729, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34787143

ABSTRACT

Cohesive granular materials often form clusters of grains, which alter their flowing properties. How these clusters form and evolve is difficult to visualize in the bulk of the material, and thus to model. Here, we use a proxy to investigate the formation of such clusters, which is the rough surface of a cohesive granular deposit. We characterize this roughness and show how it is related to the cohesion between beads. Specifically, the size of this roughness increases with the inter-particle cohesion, and the profile exhibits a self-affine behaviour, as observed for crack paths in the domain of fractography. In addition to providing a simple method to measure the inter-particle cohesion from macroscopic parameters, these results give better comprehension of the formation of clusters in cohesive granular materials.

3.
Phys Rev Lett ; 125(22): 225504, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33315464

ABSTRACT

From soda cans to space rockets, thin-walled cylindrical shells are abundant, offering exceptional load carrying capacity at relatively low weight. However, the actual load at which any shell buckles and collapses is very sensitive to imperceptible defects and cannot be predicted, which challenges the of such structures. Consequently, probabilistic descriptions in terms of empirical design rules are used and designing reliable structures requires the use of conservative strength estimates. We introduce a nonlinear description where finite-amplitude perturbations trigger buckling. Drawing from the analogy between imperfect shells which buckle and imperfect pipe flow which becomes turbulent, we experimentally show that lateral probing of cylindrical shells reveals their strength nondestructively. A new ridge-tracking method is applied to commercial cylinders with a hole showing that when the location where buckling nucleates is known we can accurately predict the buckling load of each individual shell, within ±5%. Our study provides a new promising framework to understand shell buckling, and more generally, imperfection-sensitive instabilities.

4.
Sci Adv ; 1(4): e1400214, 2015 May.
Article in English | MEDLINE | ID: mdl-26601175

ABSTRACT

Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...