Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4163, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755145

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.


Subject(s)
Amyotrophic Lateral Sclerosis , Asparaginase , DNA-Binding Proteins , Neurons , TDP-43 Proteinopathies , Animals , Female , Humans , Male , Mice , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Asparaginase/genetics , Asparaginase/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Brain/metabolism , Brain/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Motor Cortex/metabolism , Motor Cortex/pathology , Neurons/metabolism , Neurons/pathology , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism
2.
Exp Neurol ; 367: 114469, 2023 09.
Article in English | MEDLINE | ID: mdl-37327963

ABSTRACT

Prenatal Zika virus (ZIKV) infection is a serious global concern as it can lead to brain injury and many serious birth defects, collectively known as congenital Zika syndrome. Brain injury likely results from viral mediated toxicity in neural progenitor cells. Additionally, postnatal ZIKV infections have been linked to neurological complications, yet the mechanisms driving these manifestations are not well understood. Existing data suggest that the ZIKV envelope protein can persist in the central nervous system for extended periods of time, but it is unknown if this protein can independently contribute to neuronal toxicity. Here we find that the ZIKV envelope protein is neurotoxic, leading to overexpression of poly adenosine diphosphate -ribose polymerase 1, which can induce parthanatos. Together, these data suggest that neuronal toxicity resulting from the envelope protein may contribute to the pathogenesis of post-natal ZIKV-related neurologic complications.


Subject(s)
Brain Injuries , Nervous System Diseases , Neurotoxicity Syndromes , Zika Virus Infection , Zika Virus , Pregnancy , Female , Humans , Zika Virus/metabolism , Zika Virus Infection/complications , Zika Virus Infection/pathology , Viral Envelope Proteins/metabolism , Neurons/pathology
4.
J Am Chem Soc ; 142(47): 19950-19955, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33175531

ABSTRACT

Here, we describe the use of peptide backbone N-methylation as a new strategy to transform membrane-lytic peptides (MLPs) into cytocompatible intracellular delivery vehicles. The ability of lytic peptides to engage with cell membranes has been exploited for drug delivery to carry impermeable cargo into cells, but their inherent toxicity results in narrow therapeutic windows that limit their clinical translation. For most linear MLPs, a prerequisite for membrane activity is their folding at cell surfaces. Modification of their backbone with N-methyl amides inhibits folding, which directly correlates to a reduction in lytic potential but only minimally affects cell entry. We synthesized a library of N-methylated peptides derived from MLPs and conducted structure-activity studies that demonstrated the broad utility of this approach across different secondary structures, including both ß-sheet and helix-forming peptides. Our strategy is highlighted by the delivery of a notoriously difficult class of protein-protein interaction inhibitors that displayed on-target activity within cells.


Subject(s)
Peptides/metabolism , Amino Acid Sequence , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Survival , Drug Carriers/chemistry , Humans , Microscopy, Confocal , Peptides/chemistry , Peptides/pharmacology , Protein Folding , Protein Interaction Domains and Motifs , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Polo-Like Kinase 1
5.
Proc Natl Acad Sci U S A ; 117(49): 31365-31375, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229545

ABSTRACT

When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Protease Inhibitors/analysis , Protease Inhibitors/pharmacology , Zika Virus/drug effects , Animals , Antiviral Agents/therapeutic use , Artificial Intelligence , Chlorocebus aethiops , Disease Models, Animal , Immunocompetence , Inhibitory Concentration 50 , Methacycline/pharmacology , Mice, Inbred C57BL , Protease Inhibitors/therapeutic use , Quantitative Structure-Activity Relationship , Small Molecule Libraries , Vero Cells , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
6.
Neurotherapeutics ; 14(4): 1027-1048, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28952036

ABSTRACT

Zika virus has spread rapidly in the Americas and has caused devastation of human populations affected in these regions. The virus causes teratogenic effects involving the nervous system, and in adults and children can cause a neuropathy similar to Guillain-Barré syndrome, an anterior myelitis, or, rarely, an encephalitis. While major efforts have been undertaken to control mosquito populations that spread the virus and to develop a vaccine, drug development that directly targets the virus in an infected individual to prevent or treat the neurological manifestations is necessary. Rational and targeted drug development is possible since the viral life cycle and the structure of the key viral proteins are now well understood. While several groups have identified therapeutic candidates, their approaches differ in the types of screening processes and viral assays used. Animal studies are available for only a few compounds. Here we provide an exhaustive review and compare each of the classes of drugs discovered, the methods used for drug discovery, and their potential use in humans for the prevention or treatment of neurological complications of Zika virus infection.


Subject(s)
Nervous System Diseases/drug therapy , Nervous System Diseases/virology , Zika Virus Infection/drug therapy , Zika Virus/physiology , Animals , Drug Discovery , Humans , Zika Virus/genetics , Zika Virus Infection/complications , Zika Virus Infection/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...