Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 3(10): 2802-2811, 2021 May 18.
Article in English | MEDLINE | ID: mdl-36134188

ABSTRACT

Self-assembly of vertically aligned III-V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS2) domains is reported for the first time. The MOCVD growth parameter space (i.e., V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS2 micro-plates with one-to-one NW-to-MoS2 domain placement. The introduction of a pre-growth poly-l-lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo-Mo (or S-S) spacing along the [101̄0] direction of MoS2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III-V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies.

2.
Article in English | MEDLINE | ID: mdl-32128288

ABSTRACT

A practical nanofabrication process is detailed here for the generation of black GaAs. Discontinuous thin films of Au nanoparticles are electrodeposited onto GaAs substrates to catalyze site-specific etching in a solution of KMnO4 and HF according to the metal-assisted chemical etching mechanism. This provides a solution-based and lithography-free method for fabricating sub-wavelength nanostructure arrays that exhibit solar-weighted reflectance approaching 4 %. This two-step benchtop process can be entirely performed at room-temperature without lithographic patterning or vacuum instrumentation, providing an alternative high-throughput nanotexturing approach for thin-film photovoltaics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...