Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(6): 8494-8511, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32225474

ABSTRACT

Frequency dissemination over optical fiber links relies on measuring the phase of fiber-delivered lasers. Phase is extracted from optical beatnotes and the detection fails in case of beatnotes fading due to polarization changes, which strongly limit the reliability and robustness of the dissemination chain. We propose a new method that overcomes this issue, based on a dual-polarization coherent receiver and a dedicated signal processing that we developed on a field programmable gated array. Our method allowed analysis of polarization-induced phase noise from a theoretical and experimental point of view and endless tracking of the optical phase. This removes a major obstacle in the use of optical links for those physics experiments where long measurement times and high reliability are required.

2.
Opt Lett ; 37(23): 4922-4, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202091

ABSTRACT

We report on the fabrication and optical assessment of an all-solid tellurite-glass photonic bandgap fiber. The manufacturing process via a preform drawing approach and the fiber characterization procedures are described and discussed. The fiber exhibits some minor morphological deformations that do not prevent the observation of optical confinement within the fiber by bandgap effects. The experimental fiber attenuation spectrum displays clear bandgap confinement regions whose positions are confirmed by modeling the guiding properties of the ideal geometry using a plane-wave expansion method. The model identifies the bound modes of the structure and provides confirmation of experimentally observed mode field profiles.

3.
Appl Opt ; 51(19): 4542-6, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22772128

ABSTRACT

The design and fabrication of a tellurite glass multimode optical fiber for magneto-optical applications are presented and discussed. The analysis of the polarization shows that an optical beam, linearly polarized at the fiber input, changes to elliptically polarized with an ellipticity of 1∶4.5 after propagating down the fiber. However, the elliptical distribution remains unchanged with or without an applied magnetic field, demonstrating that no circular dichroism occurs within the fiber. The Verdet constant of the tellurite glass in the fiber is measured to be 28±0.5 rad·(T·m)-1, diverging by less than 3% from the Verdet constant found on the same glass composition in bulk form. These results demonstrate the feasibility to develop reliable tellurite glass fibers by the preform drawing method for magneto-optical applications.

4.
Opt Express ; 20(5): 5409-18, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418348

ABSTRACT

We present a microstructured fiber whose 9 µm diameter core consists in three concentric rings made of three active glasses having different rare earth oxide dopants, Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Pr3+, respectively. Morphological and optical characterization of the optical fiber are presented. The photoluminescence spectrum is investigated for different pumping conditions using a commercial 980 nm laser diode. Tuning of the RGB (or white light) emission is demonstrated not only by adjusting the pump power but also by using an optical iris as spatial filter which, thanks to the microstructured core, also acts as a spectral filter.


Subject(s)
Fiber Optic Technology/instrumentation , Glass/chemistry , Lighting/instrumentation , Tellurium/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...