Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(12): 125901, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30630150

ABSTRACT

A Phase Field model is developed combining the Orientation Field approach to modeling solidification with the Kim, Kim, Suzuki method of modeling binary alloys. These combined methods produce a model capable of simulating randomly oriented second phase dendrites with discrete control of the solid-liquid interface energy and thickness. The example system of carbon in a liquid uranium (U) melt is used as a test for the model. The formation of uranium carbide within a liquid U melt is simulated for isothermal conditions and compares well with experiments.

2.
Inorg Chem ; 54(10): 4821-6, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25932569

ABSTRACT

The electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported for the first time. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5(+), TeF4(+) TeF3(+), TeF2(+), TeF1(+), and Te(+), Te2(+). A trend in increasing abundance was observed for the odd fluoride bearing ions, TeF1(+) < TeF3(+) < TeF5(+), and a decreasing abundance was observed for the even fragment series, Te(F0)(+) > TeF2(+) > TeF4(+) > TeF6(+), with the molecular ion TeF6(+) not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species, and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6(+).

3.
Environ Sci Technol ; 49(5): 3158-66, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25675358

ABSTRACT

This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + ß were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.


Subject(s)
Fukushima Nuclear Accident , Models, Theoretical , Power Plants/statistics & numerical data , Radiation Monitoring/statistics & numerical data , Radioisotopes/analysis , Soil/chemistry , Japan , Power Plants/standards , Radiation Monitoring/methods , Temperature
4.
J Phys Chem C Nanomater Interfaces ; 118(4): 1783-1792, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24803973

ABSTRACT

Mössbauer spectroscopy, experimental thermodynamic measurements, and computational studies were performed to investigate the properties of molecular hydrogen binding to the organometallic fragments [MHdppe2]+ (M = Fe, Ru, Os; dppe =1,2-bis(diphenylphosphino)ethane) to form the dihydrogen complex fragments [MH(η2-H2)dppe2]+. Mössbauer spectroscopy showed that the dehydrogenated complex [FeHdppe2]+ adopts a geometry consistent with the triplet spin state, transitioning to a singlet state complex upon addition of the dihydrogen molecule in a manner similar to the previously studied dinitrogen complexes. From simulations, this spin transition behavior was found to be responsible for the strong binding behavior experimentally observed in the iron complex. Spin-singlet to spin-singlet transitions were found to exhibit thermodynamics consistent with the 5d > 3d > 4d binding trend observed for other transition metal dihydrogen complexes. Finally, the method for distinguishing between dihydrogen and dihydride complexes based on partial quadrupole splittings observed in Mössbauer spectra was confirmed, providing a tool for further characterization of these unique species for Mössbauer active compounds.

5.
J Phys Chem C Nanomater Interfaces ; 116(42): 22245-22252, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23243479

ABSTRACT

The solid state complex [Mn(CO)dppe(2)][BArF(24)] was synthesized and the thermodynamic behavior and properties of the hydrogen absorption reaction to form the dihydrogen complex [Mn(η(2)-H(2))dppe(2)][BArF(24)] were measured over the temperature range 313K-373K and pressure range 0-600 torr using the Sieverts method. The absorption behavior was accurately described by Langmuir isotherms, and enthalpy and entropy values of ΔH(∘)=-52.2 kJ/mol and ΔS(∘)=-99.6 J/mol-K for the absorption reaction were obtained from the Langmuir equilibrium constant. The observed binding strength was similar to metal hydrides and other organometallic complexes, despite rapid kinetics suggesting a site-binding mechanism similar to physisorption materials. Electronic structure calculations using the LANL2DZ-ECP basis set were performed for hydrogen absorption over the organometallic fragments [M(CO)dppe(2)](+) (M= Mn, Tc, Re). Langmuir isotherms derived from calculation for absorption onto the manganese fragment successfully simulated both the pressure-composition behavior and thermodynamic properties obtained from experiment. Results from calculations for the substitution of the metal center reproduced qualitative binding strength trends of 5d > 3d > 4d previously reported for the group 6 metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...