Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 72(4): 1352-62, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18384085

ABSTRACT

Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT. A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT is stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.


Subject(s)
Computer Simulation , Models, Molecular , Mycobacterium tuberculosis/enzymology , Prephenate Dehydratase/chemistry , Protein Structure, Secondary , Recombinant Proteins/chemistry , Scattering, Small Angle , Ultracentrifugation , X-Ray Diffraction
2.
J Struct Biol ; 161(2): 133-43, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18068379

ABSTRACT

Lotus tetragonolobus lectin (LTA) is a fucose-specific legume lectin. Although several studies report a diverse combination of biological activities for LTA, little is known about the mechanisms involved in l-fucosyl oligosaccharide recognition. The crystal structure of LTA at 2.0A resolution reveals a different legume lectin tetramer. Its structure consists of a homotetramer composed of two back-to-back GS4-like dimers arranged in a new mode, resulting in a novel tetramer. The LTA N-linked carbohydrate at Asn4 and the unusual LTA dimer-dimer interaction are related to its particular mode of tetramerization. In addition, we used small angle X-ray scattering to investigate the quaternary structure of LTA in solution and to compare it to the crystalline structure. Although the crystal structure of LTA has revealed a conserved metal-binding site, its l-fucose-binding site presents some punctual differences. Our investigation of the new tetramer of LTA and its fucose-binding site is essential for further studies related to cross-linking between LTA and complex divalent l-fucosyl carbohydrates.


Subject(s)
Lectins/chemistry , Lotus , Plant Lectins/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Dimerization , Fucose/chemistry , Molecular Sequence Data , Protein Structure, Quaternary , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...