Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 9(18): 2747-52, 1999 Sep 20.
Article in English | MEDLINE | ID: mdl-10509928

ABSTRACT

Analogs of compound 1 with a variety of azacycles and heteroaryl groups were synthesized. These analogs exhibited Ki values ranging from 0.15 to > 10,000 nM when tested in vitro for cholinergic channel receptor binding activity (displacement of [3H](-) cytisine from whole rat brain synaptic membranes).


Subject(s)
Cholinergic Agonists/pharmacology , Animals , Brain/metabolism , Cholinergic Agonists/chemistry , Cholinergic Agonists/metabolism , Ethers/chemistry , Rats , Structure-Activity Relationship
2.
J Med Chem ; 39(4): 817-25, 1996 Feb 16.
Article in English | MEDLINE | ID: mdl-8632405

ABSTRACT

Recent evidence indicating the therapeutic potential of cholinergic channel modulators for the treatment of central nervous system (CNS) disorders as well as the diversity of brain neuronal nicotine acetylcholine receptors (nAChRs) have suggested an opportunity to develop subtype-selective nAChR ligands for the treatment of specific CNS disorders with reduced side effect liabilities. We report a novel series of 3-pyridyl ether compounds which possess subnanomolar affinity for brain nAChRs and differentially activate subtypes of neuronal nAChRs. The synthesis and structure-activity relationships for the leading members of the series are described, including A-85380 (4a), which possesses ca.50 pM affinity for rat brain [(3)H]-(-)-cytisine binding sites and 163% efficacy compared to nicotine to stimulate ion flux at human alpha4beta2 nAChR subtype, and A-84543 (2a), which exhibits 84-fold selectivity to stimulate ion flux at human alpha4beta2 nAchR subtype compared to human ganglionic type nAChRs. Computational studies indicate that a reasonable superposition of a low energy conformer of 4A with (S)-nicotine and (-)-epibatidine can be achieved.


Subject(s)
Brain/metabolism , Ethers/chemical synthesis , Neurons/metabolism , Nicotinic Agonists/chemical synthesis , Pyridines/chemical synthesis , Receptors, Nicotinic/metabolism , Alkaloids/metabolism , Animals , Azocines , Binding, Competitive , Cell Line , Cell Membrane/metabolism , Ethers/metabolism , Ethers/pharmacology , Ganglia/metabolism , Humans , Molecular Structure , Nicotinic Agonists/metabolism , Nicotinic Agonists/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Quinolizines , Radioligand Assay , Rats , Receptors, Nicotinic/drug effects , Structure-Activity Relationship , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...