Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1231755, 2023.
Article in English | MEDLINE | ID: mdl-37868907

ABSTRACT

The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development. In some species, semen is composed of well-separated fractions that vary in concentration of spermatozoa and SP composition and volume. This study aimed to investigate the impact of different accumulative fractions of the porcine ejaculate (F1, composed of the sperm-rich fraction, SRF; F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF) on oEVs and uEVs protein cargo. Six days after the onset of estrus, we determined the oEVs and uEVs size and protein concentration in pregnant sows by artificial insemination (AI-sows) and in non-inseminated sows as control (C-sows). We also identified the main proteins in oEVs and uEVs, in AI-F1, AI-F2, AI-F3, and C-sows. Our results indicated that although the size of EVs is similar between AI- and C-sows, the protein concentration of both oEVs and uEVs was significantly lower in AI-sows (p < 0.05). Proteomic analysis identified 38 unique proteins in oEVs from AI-sows, mainly involved in protein stabilization, glycolytic and carbohydrate processes. The uEVs from AI-sows showed the presence of 43 unique proteins, including already-known fertility-related proteins (EZR, HSPAA901, PDS). We also demonstrated that the protein composition of oEVs and uEVs differed depending on the seminal fraction(s) inseminated (F1, F2, or F3). In conclusion, we found specific protein cargo in oEVs and uEVs according to the type of semen fraction the sow was inseminated with and whose functions these specific EVs proteins are closely associated with reproductive processes.

2.
Theriogenology ; 160: 18-25, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33166851

ABSTRACT

In sheep, cervical artificial insemination (AI) involves depositing semen at the cervical opening, as it is not possible to traverse the cervix due to its complex anatomy. However, internationally this method yields low pregnancy rates when frozen-thawed semen is used. An exception to this is in Norway, in which vaginal deposition of frozen-thawed semen to a natural estrus yields pregnancy rates around 70%. As the cervix and its secretions are the principal factors influencing sperm transport to the site of fertilization the aim of this study was to characterise the differences in the cervical anatomy as well as the cervicovaginal mucus properties of six European ewe breeds across three countries known to have differences in pregnancy rates following cervical AI with frozen-thawed semen. These were Suffolk and Belclare in Ireland, Fur and Norwegian White Sheep (NWS) in Norway and Ile de France and Romanov in France (n = 28-30 ewes/breed). Cervicovaginal mucus was collected at the follicular and luteal phases of both a synchronized and natural cycle and assessed for mucus weight, viscosity and colour. The anatomical characteristics of the cervix (length of the cervix, number of cervical rings and the appearance of the external os) were assessed post-mortem. There was a type of the cycle by ewe breed interaction represented by no differences in mucus production between ewe breeds at the natural cycle for both the follicular and luteal phases of the cycle. However, there were differences between ewe breeds at the synchronized cycle (P < 0.05). Belclare had the lowest mucus production at the follicular phase while NWS had the lowest amount of mucus at the luteal phase of the synchronized cycle. Overall, across all ewe breeds, mucus production was higher at the follicular than at the luteal phase (P < 0.05). Despite reports of Suffolk and NWS having the most divergent pregnancy rates following cervical AI with frozen-thawed semen, both breeds had the lowest overall mucus viscosity at the follicular phase of both types of cycle with no differences between both ewe breeds (P > 0.05). The length of the cervix, number of cervical rings and the external os type were affected by ewe breed (P < 0.05). Suffolk ewes had longer cervices but lower number of cervical rings than NWS and Fur ewes (both with higher pregnancy rates). In conclusion, while mucus production and mucus viscosity was affected by breed, these changes are not consistent with the known differences between ewe breeds in their pregnancy rates following cervical AI with frozen-thawed semen.


Subject(s)
Cervix Uteri , Semen Preservation , Animals , Female , France , Insemination, Artificial/veterinary , Male , Mucus , Pregnancy , Semen Preservation/veterinary , Sheep , Sheep, Domestic
SELECTION OF CITATIONS
SEARCH DETAIL
...