Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 72: 103135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565069

ABSTRACT

Cutaneous melanoma, a lethal skin cancer, arises from malignant transformation of melanocytes. Solar ultraviolet radiation (UVR) is a major environmental risk factor for melanoma since its interaction with the skin generates DNA damage, either directly or indirectly via oxidative stress. Pheomelanin pigments exacerbate oxidative stress in melanocytes by UVR-dependent and independent mechanisms. Thus, oxidative stress is considered to contribute to melanomagenesis, particularly in people with pheomelanic pigmentation. The melanocortin 1 receptor gene (MC1R) is a major melanoma susceptibility gene. Frequent MC1R variants (varMC1R) associated with fair skin and red or yellow hair color display hypomorphic signaling to the cAMP pathway and are associated with higher melanoma risk. This association is thought to be due to production of photosensitizing pheomelanins as well as deficient induction of DNA damage repair downstream of varMC1R. However, the data on modulation of oxidative DNA damage repair by MC1R remain scarce. We recently demonstrated that varMC1R accelerates clearance of reactive oxygen species (ROS)-induced DNA strand breaks in an AKT-dependent manner. Here we show that varMC1R also protects against ROS-dependent formation of 8-oxodG, the most frequent oxidative DNA lesion. Since the base excision repair (BER) pathway mediates clearance of these DNA lesions, we analyzed induction of BER enzymes in human melanoma cells of varMC1R genotype. Agonist-mediated activation of both wildtype (wtMC1R) and varMC1R significantly induced OGG and APE-1/Ref1, the rate-limiting BER enzymes responsible for repair of 8-oxodG. Moreover, we found that NADPH oxidase (NOX)-dependent generation of ROS was responsible for AKT activation and oxidative DNA damage repair downstream of varMC1R. These observations provide a better understanding of the functional properties of melanoma-associated MC1R alleles and may be useful for the rational development of strategies to correct defective varMC1R responses for efficient photoprotection and melanoma prevention in fair-skinned individuals.


Subject(s)
DNA Damage , Melanoma , Oxidative Stress , Receptor, Melanocortin, Type 1 , Signal Transduction , Humans , Cell Line, Tumor , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects
2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762683

ABSTRACT

Common variants of the MC1R gene coding the α-melanocyte stimulating hormone receptor are associated with light skin, poor tanning, blond or red hair, and increased melanoma risk, due to pigment-dependent and -independent effects. This complex phenotype is usually attributed to impaired activation of cAMP signaling. However, several MC1R variants show significant residual coupling to cAMP and efficiently activate mitogenic extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling. Yet, residual signaling and the key actions of wildtype and variant MC1R have never been assessed under strictly comparable conditions in melanocytic cells of identical genetic background. We devised a strategy based on CRISPR-Cas9 knockout of endogenous MC1R in a human melanoma cell line wildtype for BRAF, NRAS and NF1, followed by reconstitution with epitope-labeled MC1R constructs, and functional analysis of clones expressing comparable levels of wildtype, R151C or D294H MC1R. The proliferation rate, shape, adhesion, motility and sensitivity to oxidative DNA damage were compared. The R151C and D294H RHC variants displayed impaired cAMP signaling, intracellular stability similar to the wildtype, triggered ERK1/2 activation as effectively as the wildtype, and afforded partial protection against oxidative DNA damage, although less efficiently than the wildtype. Therefore, common melanoma-associated MC1R variants display biased signaling and significant genoprotective activity.


Subject(s)
Melanoma , Receptor, Melanocortin, Type 1 , Humans , Cyclic AMP/metabolism , DNA/metabolism , Melanoma/genetics , Melanoma/metabolism , Oxidative Stress , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism
3.
Life (Basel) ; 12(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892921

ABSTRACT

Mahogunin Ring Finger 1 (MGRN1), a ubiquitin ligase expressed in melanocytes, interacts with the α melanocyte-stimulating hormone receptor, a well-known melanoma susceptibility gene. Previous studies showed that MGRN1 modulates the phenotype of mouse melanocytes and melanoma cells, with effects on pigmentation, shape, and motility. Moreover, MGRN1 knockdown augmented the burden of DNA breaks in mouse cells, indicating that loss of MGRN1 promoted genomic instability. However, data concerning the roles of MGRN1 in human melanoma cells remain scarce. We analyzed MGRN1 knockdown in human melanoma cells. Transient MGRN1 depletion with siRNA or permanent knockdown in human melanoma cells by CRISPR/Cas9 caused an apparently MITF-independent switch to a more dendritic phenotype. Lack of MGRN1 also increased the fraction of human cells in the S phase of the cell cycle and the burden of DNA breaks but did not significantly impair proliferation. Moreover, in silico analysis of publicly available melanoma datasets and estimation of MGRN1 in a cohort of clinical specimens provided preliminary evidence that MGRN1 expression is higher in human melanomas than in normal skin or nevi and pointed to an inverse correlation of MGRN1 expression in human melanoma with patient survival, thus suggesting potential use of MGRN1 as a melanoma biomarker.

4.
Cancers (Basel) ; 12(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019669

ABSTRACT

The mouse mahoganoid mutation abrogating Mahogunin Ring Finger-1 (MGRN1) E3 ubiquitin ligase expression causes hyperpigmentation, congenital heart defects and neurodegeneration. To study the pathophysiology of MGRN1 loss, we compared Mgrn1-knockout melanocytes with genetically matched controls and melan-md1 (mahoganoid) melanocytes. MGRN1 knockout induced a more differentiated and adherent phenotype, decreased motility, increased the percentage of cells in the S phase of the cell cycle and promoted genomic instability, as shown by stronger γH2AX labelling, increased burden of DNA breaks and higher abundance of aneuploid cells. Lack of MGRN1 expression decreased the ability of melanocytes to cope with DNA breaks generated by oxidizing agents or hydroxyurea-induced replicative stress, suggesting a contribution of genomic instability to the mahoganoid phenotype. MGRN1 knockout in B16-F10 melanoma cells also augmented pigmentation, increased cell adhesion to collagen, impaired 2D and 3D motility and caused genomic instability. Tumors formed by Mgrn1-KO B16-F10 cells had lower mitotic indices, fewer Ki67-positive cells and showed a trend towards smaller size. In short-term lung colonization assays Mgrn1-KO cells showed impaired colonization potential. Moreover, lower expression of MGRN1 is significantly associated with better survival of human melanoma patients. Therefore, MGRN1 might be an important phenotypic determinant of melanoma cells.

5.
Exp Dermatol ; 29(7): 610-615, 2020 07.
Article in English | MEDLINE | ID: mdl-32474972

ABSTRACT

The melanocortin 1 receptor (MC1R) is a major determinant of skin pigmentation and sensitivity to ultraviolet radiation. When stimulated by its natural agonists, it promotes the switch from synthesis of poorly photoprotective and lightly colored pheomelanins to production of photoprotective and darker eumelanins. In addition to an unusually high number of single nucleotide polymorphisms, the MC1R is expressed as 3 protein-coding splice variants. Two transcripts display different 5' untranslated sequences but yield the same open reading frame corresponding to the canonical 317 aminoacids protein (termed MC1R). An alternative transcript named MC1R-203 encodes for a 382 amino acids protein of poorly characterized functional properties containing an additional 65 aminoacids C-terminal extension. Given the known roles of the MC1R C-terminal extension in forward trafficking, coupling to intracellular effectors and desensitization, the different structure of this domain in MC1R and MC1R-203 may lead to significant functional alteration(s). We have assessed the functional properties of MC1R-203, as compared with the canonical MC1R form. We show that unstimulated HBL human melanoma cells express the MC1R-203 spliceoform, although at much lower levels than canonical MC1R. When expressed in heterologous HEK293 cells, the presence of the 65 aminoacid-long cytosolic extension immediately after Cys316 in MC1R-203 did not impair the intracellular stability of the protein, but it interfered with functional coupling to the cAMP cascade and with the ubiquitylation of ARRB2 associated with MC1R desensitization. Conversely, MC1R-203 retained full capacity to activate ERK1/2 signaling. Accordingly, MC1R-203 displays biased signaling when expressed in HEK293 cells.


Subject(s)
Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Cell Line, Tumor , Cyclic AMP/biosynthesis , Gene Expression , HEK293 Cells , Humans , MAP Kinase Signaling System , Polymorphism, Single Nucleotide , Protein Isoforms , Ubiquitination , beta-Arrestin 2/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 76-94, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28947386

ABSTRACT

Signaling from the melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor (GPCR) crucial for melanocyte proliferation and differentiation, is regulated by cytosolic ß-arrestins (ARRBs). MC1R signaling is also negatively modulated by the E3-ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1), whose mutation causes hyperpigmentation, congenital heart defects and neurodegeneration in mice. We showed previously that although MC1R interacts stably with human ARRB1 or ARRB2, only ARRB2 mediates receptor desensitization and internalization. We analyzed MC1R-dependent ARRB ubiquitination, and the possible role of MGRN1. ARRB1 expressed in heterologous cells or human melanoma cells migrated in SDS-PAGE as a 55kDa protein whereas ARRB2 migrated as two major bands of apparent molecular weight near 45 and 55kDa, with an intermediate mobility band occasionally detected. These forms were related by post-translational modification rather than by proteolysis. Presence of MC1R favored expression of the 45kDa protein, the form that interacted preferentially with MC1R. MC1R also mediated poly- or multimonoubiquitination of ARRB2. Ubiquitination was agonist-independent, but required a native MC1R conformation and/or normal receptor trafficking to the plasma membrane, as it was not observed for loss-of-function MC1R variants. In a heterologous expression system, MC1R-dependent ARRB ubiquitination was enhanced by overexpression of MGRN1 and was impaired by siRNA-mediated MGRN1 knockdown thus pointing to MGRN1 as the responsible E3-ligase. Co-immunoprecipitation experiments demonstrated interaction of MGRN1 and ARRBs in the presence of MC1R, suggesting a scaffolding role for the GPCR that may determine the selectivity of E3-ubiquitin ligase engagement and the functional outcome of ARRB ubiquitination.


Subject(s)
Receptor, Melanocortin, Type 1/physiology , Ubiquitin-Protein Ligases/physiology , Ubiquitination/genetics , beta-Arrestins/metabolism , Cells, Cultured , HEK293 Cells , Humans , Protein Processing, Post-Translational , Receptor, Melanocortin, Type 1/genetics , beta-Arrestin 1/metabolism
7.
J Cell Biochem ; 118(12): 4404-4413, 2017 12.
Article in English | MEDLINE | ID: mdl-28452072

ABSTRACT

Melanocortin 1 receptor (MC1R) and BRAF are common mutations in melanoma. Through different pathways, they each regulate the expression of PGC-1α, which is a key factor in the regulation of mitochondrial biogenesis and the antioxidant response. Our aim was to study the importance of the different regulatory characteristics of MC1R and BRAF on the pathways they regulate in melanoma. For this purpose, ROS production, levels of gene expression and enzymatic activities were analyzed in HBL and MeWo, with wild-type MC1R and BRAF, and A375 cells with mutant MC1R and BRAF. HBL cells showed a functional MC1R-PGC-1α pathway and exhibited the lowest ROS production, probably because of a better mitochondrial pool and the presence of UCP2. On the other hand, MeWo cells showed elevated levels of PGC-1α but also high ROS production, similar to the A375 cells, along with an activated antioxidant response and significantly low levels of UCP2. Finally, A375 cells are mutant for BRAF, and thus showed low levels of PGC-1α. Consequently, A375 cells exhibited poor mitochondrial biogenesis and function, and no antioxidant response. These results show the importance of the activation of the MC1R-PGC-1α pathway for mitochondrial biogenesis and function in melanoma development, as well as BRAF for the antioxidant response regulated by PGC-1α. J. Cell. Biochem. 118: 4404-4413, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Antioxidants/metabolism , Melanoma/metabolism , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Cell Line, Tumor , Humans , Melanoma/genetics , Melanoma/pathology , Mitochondria/genetics , Neoplasm Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Reactive Oxygen Species/metabolism , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism
8.
PLoS One ; 10(12): e0144757, 2015.
Article in English | MEDLINE | ID: mdl-26657157

ABSTRACT

The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-ß-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.


Subject(s)
Melanocytes/metabolism , Mutant Chimeric Proteins/genetics , RNA Splicing , Receptor, Melanocortin, Type 1/genetics , Tubulin/genetics , Cyclic AMP/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Melanocytes/cytology , Melanocytes/drug effects , Melanocytes/radiation effects , Mutant Chimeric Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Protein Transport , Receptor, Melanocortin, Type 1/metabolism , Signal Transduction , Tubulin/metabolism , Ultraviolet Rays , alpha-MSH/metabolism , alpha-MSH/pharmacology
9.
J Cell Sci ; 126(Pt 16): 3724-37, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23750009

ABSTRACT

The melanocortin 1 receptor (MC1R) is a G-protein-coupled receptor (GPCR) crucial for the regulation of melanocyte proliferation and differentiation. MC1R activation by melanocortin hormones triggers the cAMP pathway and stimulates the extracellular-signal-regulated protein kinases ERK1 and ERK2 to promote synthesis of photoprotective eumelanin pigments, among other effects. Signaling from most GPCRs is regulated by the ß-arrestin (ARRB) family of cytosolic multifunctional adaptor proteins, which mediate signal termination and endocytosis of GPCR-agonist complexes. The ubiquitously expressed non-visual ß-arrestin1 (ARRB1) and ß-arrestin2 (ARRB2) are highly similar but not functionally equivalent. Their role in the regulation of MC1R is unknown. Using a combination of co-immunoprecipitation, gel filtration chromatography, confocal microscopy, siRNA-mediated knockdown and functional assays, we demonstrated agonist-independent competitive interactions of ARRB1 and ARRB2 with MC1R, which might also be independent of phosphorylation of Ser/Thr residues in the C-terminus of the MC1R. The effects of ARRBs were isoform specific; ARRB2 inhibited MC1R agonist-dependent cAMP production but not ERK activation, stimulated internalization and showed prolonged co-localization with the receptor in endocytic vesicles. By contrast, ARRB1 had no effect on internalization or functional coupling, but competed with ARRB2 for binding MC1R, which might increase signaling by displacement of inhibitory ARRB2. These data suggest a new mechanism of MC1R functional regulation based on the relative expression of ARRB isoforms, with possible activatory ARRB1-dependent effects arising from partial relief of inhibitory ARRB2-MC1R interactions. Thus, competitive displacement of inhibitory ARRBs by functionally neutral ARRB isoforms might exert a paradigm-shifting signal-promoting effect to fine-tune signaling downstream of certain GPCRs.


Subject(s)
Arrestins/metabolism , Receptor, Melanocortin, Type 1/metabolism , Arrestins/genetics , Cell Differentiation/drug effects , HEK293 Cells , Humans , Protein Isoforms , Receptor, Melanocortin, Type 1/genetics , Signal Transduction , Transfection , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL
...