Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 109(36): 17311-9, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853210

ABSTRACT

The interaction of two hybrid peptides of cecropin A and melittin [CA(1-8)M(1-18) and CA(1-7)M(2-9)] with liposomes was studied by differential scanning calorimetry (DSC), circular dichroism (CD), and quasi-elastic light scattering (QELS). The study was carried out with large unilamellar vesicles (LUVs) of three different lipid compositions: 1,2-dimyristoil-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a binary mixture of DMPC/DMPG, in a wide range of peptide-to-lipid (P:L) molar ratios (0 to 1:7). DSC results indicate that, for both peptides, the interaction depends on membrane composition, with very different behavior for zwitterionic and anionic membranes. CD data show that, although the two peptides have different secondary structures in buffer (random coil for CA(1-7)M(2-9) and predominantly beta-sheet for CA(1-8)M(1-18)), they both adopt an alpha-helical structure in the presence of the membranes. Overall, results are compatible with a model involving a strong electrostatic surface interaction between the peptides and the negatively charged liposomes, which gives place to aggregation in the gel phase and precipitation after a threshold peptide concentration. In the case of zwitterionic membranes, a progressive surface coverage with peptide molecules destabilizes the membrane, eventually leading to membrane disruption. Moreover, delicate modulations in behavior were observed depending on the peptide.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipids/chemistry , Melitten/chemistry , Peptides/chemistry , Amino Acid Sequence , Calorimetry, Differential Scanning , Circular Dichroism , Light , Molecular Sequence Data , Protein Conformation , Scattering, Radiation
2.
Biochem J ; 386(Pt 3): 599-605, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15496139

ABSTRACT

Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the chelation of Fe(II) into the protoporphyrin IX ring. The energetics of the binding between murine ferrochelatase and mesoporphyrin were determined using isothermal titration calorimetry, which revealed a stoichiometry of one molecule of mesoporphyrin bound per protein monomer. The binding is strongly exothermic, with a large intrinsic enthalpy (DeltaH=-97.1 kJ x mol(-1)), and is associated with the uptake of two protons from the buffer. This proton transfer suggests that hydrogen bonding between ferrochelatase and mesoporphyrin is a key factor in the thermodynamics of the binding reaction. Differential scanning calorimetry thermograms indicated a co-operative two-state denaturation process with a single transition temperature of 56 degrees C for wild-type murine ferrochelatase. An increase in the thermal stability of ferrochelatase is dependent upon mesoporphyrin binding. Similarly, murine ferrochelatase variants, in which the active site Glu-289 was replaced by either glutamine or alanine and, when purified, contained specifically-bound protoporphyrin, exhibited enhanced protein stability when compared with wild-type ferrochelatase. However, in contrast with the wild-type enzyme, the thermal denaturation of ferrochelatase variants was best described as a non-co-operative denaturation process.


Subject(s)
Ferrochelatase/metabolism , Mesoporphyrins/metabolism , Protoporphyrins/metabolism , Animals , Bacillus subtilis/enzymology , Binding Sites , Buffers , Calorimetry, Differential Scanning , Enzyme Stability , Ferrochelatase/chemistry , Ferrochelatase/genetics , Glutamic Acid/genetics , Glutamic Acid/metabolism , Hydrogen Bonding , Mice , Models, Molecular , Mutation/genetics , Protein Conformation , Protein Denaturation , Protons , Substrate Specificity , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...