Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2949-2952, 2022 07.
Article in English | MEDLINE | ID: mdl-36085652

ABSTRACT

Because drowsiness is a major cause in vehicle accidents, its automated detection is critical. Scale-free temporal dynamics is known to be typical of physiological and body rhythms. The present work quantifies the benefits of applying a recent and original multivariate selfsimilarity analysis to several modalities of polysomnographic measurements (heart rate, blood pressure, electroencephalogram and respiration), from the MIT-BIH Polysomnographic Database, to better classify drowsiness-related sleep stages. Clinical relevance- This study shows that probing jointly temporal dynamics amongst polysomnographic measurements, with a proposed original multivariate multiscale approach, yields a gain of above 5% in the Area-under-Curve quanti-fying drowsiness-related sleep stage classification performance compared to univariate analysis.


Subject(s)
Sleep Stages , Wavelet Analysis , Electroencephalography , Heart Rate , Sleep
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 167-170, 2022 07.
Article in English | MEDLINE | ID: mdl-36086050

ABSTRACT

Monitoring the evolution of the Covid19 pandemic constitutes a critical step in sanitary policy design. Yet, the assessment of the pandemic intensity within the pandemic period remains a challenging task because of the limited quality of data made available by public health authorities (missing data, outliers and pseudoseasonalities, notably), that calls for cumbersome and ad-hoc preprocessing (denoising) prior to estimation. Recently, the estimation of the reproduction number, a measure of the pandemic intensity, was formulated as an inverse problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that formulation lacks robustness against the limited quality of the Covid19 data and confidence assessment. The present work aims to address both limitations: First, it discusses solutions to produce a robust assessment of the pandemic intensity by accounting for the low quality of the data directly within the inverse problem formulation. Second, exploiting a Bayesian interpretation of the inverse problem formulation, it devises a Monte Carlo sampling strategy, tailored to a nonsmooth log-concave a posteriori distribution, to produce relevant credibility interval-based estimates for the Covid19 reproduction number. Clinical relevance Applied to daily counts of new infections made publicly available by the Health Authorities for around 200 countries, the proposed procedures permit robust assessments of the time evolution of the Covid19 pandemic intensity, updated automatically and on a daily basis.


Subject(s)
COVID-19 , Pandemics , Bayes Theorem , COVID-19/epidemiology , Humans , Monte Carlo Method , Reproduction
4.
Philos Trans A Math Phys Eng Sci ; 379(2212): 20200260, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34689620

ABSTRACT

The study of functional brain-heart interplay has provided meaningful insights in cardiology and neuroscience. Regarding biosignal processing, this interplay involves predominantly neural and heartbeat linear dynamics expressed via time and frequency domain-related features. However, the dynamics of central and autonomous nervous systems show nonlinear and multifractal behaviours, and the extent to which this behaviour influences brain-heart interactions is currently unknown. Here, we report a novel signal processing framework aimed at quantifying nonlinear functional brain-heart interplay in the non-Gaussian and multifractal domains that combines electroencephalography (EEG) and heart rate variability series. This framework relies on a maximal information coefficient analysis between nonlinear multiscale features derived from EEG spectra and from an inhomogeneous point-process model for heartbeat dynamics. Experimental results were gathered from 24 healthy volunteers during a resting state and a cold pressor test, revealing that synchronous changes between brain and heartbeat multifractal spectra occur at higher EEG frequency bands and through nonlinear/complex cardiovascular control. We conclude that significant bodily, sympathovagal changes such as those elicited by cold-pressure stimuli affect the functional brain-heart interplay beyond second-order statistics, thus extending it to multifractal dynamics. These results provide a platform to define novel nervous-system-targeted biomarkers. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


Subject(s)
Electroencephalography , Heart , Brain , Heart Rate , Humans , Nonlinear Dynamics , Signal Processing, Computer-Assisted
5.
Front Pediatr ; 9: 660476, 2021.
Article in English | MEDLINE | ID: mdl-34414140

ABSTRACT

The overarching goal of the present work is to contribute to the understanding of the relations between fetal heart rate (FHR) temporal dynamics and the well-being of the fetus, notably in terms of predicting the evolution of lactate, pH and cardiovascular decompensation (CVD). It makes uses of an established animal model of human labor, where 14 near-term ovine fetuses subjected to umbilical cord occlusions (UCO) were instrumented to permit regular intermittent measurements of metabolites lactate and base excess, pH, and continuous recording of electrocardiogram (ECG) and systemic arterial blood pressure (to identify CVD) during UCO. ECG-derived FHR was digitized at the sampling rate of 1,000 Hz and resampled to 4 Hz, as used in clinical routine. We focused on four FHR variability features which are tunable to temporal scales of FHR dynamics, robustly computable from FHR sampled at 4 Hz and within short-time sliding windows, hence permitting a time-dependent, or local, analysis of FHR which helps dealing with signal noise. Results show the sensitivity of the proposed features for early detection of CVD, correlation to metabolites and pH, useful for early acidosis detection and the importance of coarse time scales (2.5-8 s) which are not disturbed by the low FHR sampling rate. Further, we introduce the performance of an individualized self-referencing metric of the distance to healthy state, based on a combination of the four features. We demonstrate that this novel metric, applied to clinically available FHR temporal dynamics alone, accurately predicts the time occurrence of CVD which heralds a clinically significant degradation of the fetal health reserve to tolerate the trial of labor.

6.
Nat Commun ; 12(1): 2643, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976118

ABSTRACT

Prediction of future sensory input based on past sensory information is essential for organisms to effectively adapt their behavior in dynamic environments. Humans successfully predict future stimuli in various natural settings. Yet, it remains elusive how the brain achieves effective prediction despite enormous variations in sensory input rate, which directly affect how fast sensory information can accumulate. We presented participants with acoustic sequences capturing temporal statistical regularities prevalent in nature and investigated neural mechanisms underlying predictive computation using MEG. By parametrically manipulating sequence presentation speed, we tested two hypotheses: neural prediction relies on integrating past sensory information over fixed time periods or fixed amounts of information. We demonstrate that across halved and doubled presentation speeds, predictive information in neural activity stems from integration over fixed amounts of information. Our findings reveal the neural mechanisms enabling humans to robustly predict dynamic stimuli in natural environments despite large sensory input rate variations.


Subject(s)
Adaptation, Physiological/physiology , Algorithms , Brain/physiology , Models, Neurological , Nerve Net/physiology , Sensation/physiology , Acoustic Stimulation , Adult , Brain/cytology , Female , Humans , Magnetoencephalography/methods , Male , Neurons/physiology , Psychomotor Performance/physiology , Young Adult
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 561-564, 2020 07.
Article in English | MEDLINE | ID: mdl-33018051

ABSTRACT

Quantification of brain-heart interplay (BHI) has mainly been performed in the time and frequency domains. However, such functional interactions are likely to involve nonlinear dynamics associated with the two systems. To this extent, in this preliminary study we investigate the functional coupling between multifractal properties of Electroencephalography (EEG) and Heart Rate Variability (HRV) series using a channel- and time scale-wise maximal information coefficient analysis. Experimental results were gathered from 24 healthy volunteers undergoing a resting state and a cold-pressure test, and suggest that significant changes between the two experimental conditions might be associated with nonlinear quantifiers of the multifractal spectrum. Particularly, major brain-heart functional coupling was associated with the secondorder cumulant of the multifractal spectrum. We conclude that a functional nonlinear relationship between brain- and heartbeat-related multifractal sprectra exist, with higher values associated with the resting state.


Subject(s)
Electroencephalography , Nonlinear Dynamics , Brain , Heart , Heart Rate , Humans
8.
PLoS One ; 15(8): e0237901, 2020.
Article in English | MEDLINE | ID: mdl-32817697

ABSTRACT

Among the different indicators that quantify the spread of an epidemic such as the on-going COVID-19, stands first the reproduction number which measures how many people can be contaminated by an infected person. In order to permit the monitoring of the evolution of this number, a new estimation procedure is proposed here, assuming a well-accepted model for current incidence data, based on past observations. The novelty of the proposed approach is twofold: 1) the estimation of the reproduction number is achieved by convex optimization within a proximal-based inverse problem formulation, with constraints aimed at promoting piecewise smoothness; 2) the approach is developed in a multivariate setting, allowing for the simultaneous handling of multiple time series attached to different geographical regions, together with a spatial (graph-based) regularization of their evolutions in time. The effectiveness of the approach is first supported by simulations, and two main applications to real COVID-19 data are then discussed. The first one refers to the comparative evolution of the reproduction number for a number of countries, while the second one focuses on French departments and their joint analysis, leading to dynamic maps revealing the temporal co-evolution of their reproduction numbers.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Spatio-Temporal Analysis , Algorithms , COVID-19 , Coronavirus Infections/virology , Databases, Factual , Disease Transmission, Infectious/statistics & numerical data , France/epidemiology , Humans , Pandemics , Pneumonia, Viral/virology , Poisson Distribution , SARS-CoV-2 , Software
9.
PLoS One ; 15(4): e0231550, 2020.
Article in English | MEDLINE | ID: mdl-32352990

ABSTRACT

Bike sharing systems (BSS) have been growing fast all over the world, along with the number of articles analyzing such systems. However the lack of databases at the individual level and covering several years has limited the analysis of BSS users' behavior in the long term. This article gives a first detailed description of the temporal evolution of individual customers. Using a 5-year dataset covering 120,827 distinct year-long subscribers, we show the heterogeneous individual trajectories masked by the overall system stability. Users follow two main trajectories: about half remain in the system for at most one year, showing a low median activity (47 trips); the remaining half corresponds to more active users (median activity of 91 trips in their first year) that remain continuously active for several years (mean time = 2.9 years). We show that users from urban cores, middle-aged and male are over represented among these long-term users, which profit most from the BSS. This provides further support for the view that BSS mostly benefit the already privileged.


Subject(s)
Bicycling , Consumer Behavior , Adolescent , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Sex Factors , Time Factors , Urban Population , Young Adult
10.
Front Physiol ; 11: 578537, 2020.
Article in English | MEDLINE | ID: mdl-33488390

ABSTRACT

The analysis of human brain functional networks is achieved by computing functional connectivity indices reflecting phase coupling and interactions between remote brain regions. In magneto- and electroencephalography, the most frequently used functional connectivity indices are constructed based on Fourier-based cross-spectral estimation applied to specific fast and band-limited oscillatory regimes. Recently, infraslow arrhythmic fluctuations (below the 1 Hz) were recognized as playing a leading role in spontaneous brain activity. The present work aims to propose to assess functional connectivity from fractal dynamics, thus extending the assessment of functional connectivity to the infraslow arrhythmic or scale-free temporal dynamics of M/EEG-quantified brain activity. Instead of being based on Fourier analysis, new Imaginary Coherence and weighted Phase Lag indices are constructed from complex-wavelet representations. Their performances are first assessed on synthetic data by means of Monte-Carlo simulations, and they are then compared favorably against the classical Fourier-based indices. These new assessments of functional connectivity indices are also applied to MEG data collected on 36 individuals both at rest and during the learning of a visual motion discrimination task. They demonstrate a higher statistical sensitivity, compared to their Fourier counterparts, in capturing significant and relevant functional interactions in the infraslow regime and modulations from rest to task. Notably, the consistent overall increase in functional connectivity assessed from fractal dynamics from rest to task correlated with a change in temporal dynamics as well as with improved performance in task completion, which suggests that the complex-wavelet weighted Phase Lag index is the sole index is able to capture brain plasticity in the infraslow scale-free regime.

11.
Proc Math Phys Eng Sci ; 475(2229): 20190150, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31611713

ABSTRACT

Multifractal analysis, that quantifies the fluctuations of regularities in time series or textures, has become a standard signal/image processing tool. It has been successfully used in a large variety of applicative contexts. Yet, successes are confined to the analysis of one signal or image at a time (univariate analysis). This is because multivariate (or joint) multifractal analysis remains so far rarely used in practice and has barely been studied theoretically. In view of the myriad of modern real-world applications that rely on the joint (multivariate) analysis of collections of signals or images, univariate analysis constitutes a major limitation. The goal of the present work is to theoretically ground multivariate multifractal analysis by studying the properties and limitations of the most natural extension of the univariate formalism to a multivariate formulation. It is notably shown that while performing well for a class of model processes, this natural extension is not valid in general. Based on the theoretical study of the mechanisms leading to failure, we propose alternative formulations and examine their mathematical properties.

12.
Phys Rev E ; 100(3-1): 032803, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639998

ABSTRACT

The present work investigates paper-paper friction dynamics by pulling a slider over a substrate. It focuses on the transition between stick-slip and inertial regimes. Although the device is classical, probing solid friction with the fewest contact damage requires that the applied load should be small. This induces noise, mostly impulsive in nature, on the recorded slider motion and force signals. To address the challenging issue of describing the physics of such systems, we promote here the use of nonlinear filtering techniques relying on recent nonsmooth optimization schemes. In contrast to linear filtering, nonlinear filtering captures the slider velocity asymmetry and, thus, the creep motion before sliding. Precise estimates of the stick and slip phase durations can thus be obtained. The transition between the stick-slip and inertial regimes is continuous. Here we propose a criterion based on the probability of the system to be in the stick-slip regime to quantify this transition. A phase diagram is obtained that characterizes the dynamics of this frictional system under low confinement pressure.

13.
Acta Obstet Gynecol Scand ; 98(9): 1207-1217, 2019 09.
Article in English | MEDLINE | ID: mdl-31081113

ABSTRACT

The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.


Subject(s)
Algorithms , Fetal Monitoring/methods , Acidosis/diagnosis , Cardiotocography/methods , Electrocardiography/methods , Female , Humans , Pregnancy , Prenatal Diagnosis , Signal Processing, Computer-Assisted , United Kingdom
14.
IEEE Trans Biomed Eng ; 66(1): 80-88, 2019 01.
Article in English | MEDLINE | ID: mdl-29993421

ABSTRACT

OBJECTIVE: Numerous indices were devised for the statistical characterization of temporal dynamics of heart rate variability (HRV) with the aim to discriminate between healthy subjects and nonhealthy patients. Elaborating on the concepts of (multi)fractal and nonlinear analyses, the present contribution defines and studies formally novel non Gaussian multiscale representations. METHODS: A methodological framework for non Gaussian multiscale representations constructed on wavelet p-leaders is developed, relying a priori neither on exact scale-free dynamics nor on predefined forms of departure from Gaussianity. Its versatility in quantifying the strength and nature of departure from Gaussian is analyzed theoretically and numerically. The ability of the representations to discriminate between healthy subjects and congestive heart failure (CHF) patients, and between survivors and nonsurvivor CHF patients, is assessed on a large cohort of 198 subjects. RESULTS: The analysis leads to conclude that i) scale-free and multifractal dynamics are observed, both for healthy subjects and CHF patients, for time scales shorter than [Formula: see text]; ii) a circadian evolution of multifractal and non Gaussian properties of HRV is evidenced for healthy subjects, but not for CHF patients; iii) non Gaussian multiscale indices possess high discriminative abilities between survivor and nonsurvivor CHF patients, at specific time scales ([Formula: see text] and [Formula: see text]). CONCLUSIONS: The non Gaussian multiscale representations provide evidence for the existence of short-term cascade-type multifractal mechanisms underlying HRV for both healthy and CHF subjects. A circadian evolution of this mechanism is only evidenced for the healthy group, suggesting an alteration of the sympathetic-parasympathetic balance for CHF patients. SIGNIFICANCE: Results obtained for a large cohort of subjects suggest that the novel non Gaussian indices might robustly quantify crucial information for clinical risk stratification in CHF patients.


Subject(s)
Electrocardiography, Ambulatory/methods , Heart Failure/physiopathology , Heart Rate/physiology , Wavelet Analysis , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult
15.
J Neurosci Methods ; 309: 175-187, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30213548

ABSTRACT

BACKGROUND: The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dynamics. While the functional relevance of neural oscillations has been largely investigated, both the nature and the role of scale-free dynamics in brain processing have been disputed. NEW METHOD: Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual motion discrimination task. RESULTS: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task. COMPARISON WITH EXISTING METHOD(S): We showed that the wavelet leader based multifractal approach extends power spectrum estimation methods in the way of characterizing finely scale-free brain dynamics. CONCLUSIONS: Altogether, our approach provides novel fine-grained characterizations of scale-free dynamics in human brain activity.


Subject(s)
Brain Mapping/methods , Brain/physiology , Magnetoencephalography/methods , Wavelet Analysis , Adult , Discrimination, Psychological/physiology , Female , Humans , Image Processing, Computer-Assisted , Male , Motion Perception/physiology , Young Adult
16.
IEEE Trans Biomed Eng ; 65(10): 2345-2354, 2018 10.
Article in English | MEDLINE | ID: mdl-29993522

ABSTRACT

Multifractal analysis of human heartbeat dynamics has been demonstrated to provide promising markers of Congestive Heart Failure (CHF). Yet, it crucially builds on the interpolation of RR intervals series, which has been generically performed with limited links to CHF pathophysiology. We devise a novel methodology estimating multifractal autonomic dynamics from heartbeat-derived series defined in the continuous time. We hypothesize that markers estimated from our novel framework are also effective for mortality prediction in severe CHF. We merge multifractal analysis within a methodological framework based on inhomogeneous point process models of heartbeat dynamics. Specifically, wavelet coefficients and wavelet leaders are computed over measures extracted from instantaneous statistics of probability density functions characterizing and predicting the time until the next heartbeat event occurs. The proposed approach is tested on data from 94 CHF patients, aiming at predicting survivor and non-survivor individuals as determined after a 4 years follow up. Instantaneous markers of vagal and sympatho-vagal dynamics display power-law scaling for a large range of scales, from s to s. Using standard SVM algorithms, the proposed inhomogeneous point-process representation based multifractal analysis achieved the best CHF mortality prediction accuracy of 79.11 % (sensitivity 90.48%, specificity 67.74%). Our results suggest that heartbeat scaling and multifractal properties in CHF patients are not generated at the sinus-node level, but rather by the intrinsic action of vagal short-term control and of sympatho-vagal fluctuations associated with circadian cardiovascular control, especially within the VLF band. These markers might provide critical information in devising a clinical tool for individualized prediction of survivor and non-survivor CHF patients.


Subject(s)
Heart Failure/mortality , Heart Failure/physiopathology , Heart Rate/physiology , Wavelet Analysis , Aged , Electrocardiography , Female , Fractals , Heart Failure/epidemiology , Humans , Male , Middle Aged , Models, Statistical
17.
Methods Inf Med ; 57(3): 141-145, 2018 05.
Article in English | MEDLINE | ID: mdl-29719922

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is an identified risk factor for ischemic strokes (IS). AF causes a loss in atrial contractile function that favors the formation of thrombi, and thus increases the risk of stroke. Also, AF produces highly irregular and complex temporal dynamics in ventricular response RR intervals. Thus, it is hypothesized that the analysis of RR dynamics could provide predictors for IS. However, these complex and nonlinear dynamics call for the use of advanced multiscale nonlinear signal processing tools. OBJECTIVES: The global aim is to investigate the performance of a recently-proposed multiscale and nonlinear signal processing tool, the scattering transform, in predicting IS for patients suffering from AF. METHODS: The heart rate of a cohort of 173 patients from Fujita Health University Hospital in Japan was analyzed with the scattering transform. First, p-values of Wilcoxon rank sum tests were used to identify scattering coefficients achieving significant (univariate) discrimination between patients with and without IS. Second, a multivariate procedure for feature selection and classification, the Sparse Support Vector Machine (S-SVM), was applied to predict IS. RESULTS: Groups of scattering coefficients, located at several time-scales, were identified as significantly higher (p-value < 0.05) in patients who developed IS than in those who did not. Though the overall predictive power of these indices remained moderate (around 60 %), it was found to be much higher when analysis was restricted to patients not taking antithrombotic treatment (around 80 %). Further, S-SVM showed that multivariate classification improves IS prediction, and also indicated that coefficients involved in classification differ for patients with and without antithrombotic treatment. CONCLUSIONS: Scattering coefficients were found to play a significant role in predicting IS, notably for patients not receiving antithrombotic treatment. S-SVM improves IS detection performance and also provides insight on which features are important. Notably, it shows that AF patients not taking antithrombotic treatment are characterized by a slow modulation of RR dynamics in the ULF range and a faster modulation in the HF range. These modulations are significantly decreased in patients with IS, and hence have a good discriminant ability.


Subject(s)
Atrial Fibrillation/complications , Atrial Fibrillation/physiopathology , Heart Rate/physiology , Stroke/complications , Stroke/physiopathology , Area Under Curve , Humans , Machine Learning , Multivariate Analysis , Support Vector Machine
18.
J Neurosci ; 38(6): 1541-1557, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29311143

ABSTRACT

Forming valid predictions about the environment is crucial to survival. However, whether humans are able to form valid predictions about natural stimuli based on their temporal statistical regularities remains unknown. Here, we presented subjects with tone sequences with pitch fluctuations that, over time, capture long-range temporal dependence structures prevalent in natural stimuli. We found that subjects were able to exploit such naturalistic statistical regularities to make valid predictions about upcoming items in a sequence. Magnetoencephalography (MEG) recordings revealed that slow, arrhythmic cortical dynamics tracked the evolving pitch sequence over time such that neural activity at a given moment was influenced by the pitch of up to seven previous tones. Importantly, such history integration contained in neural activity predicted the expected pitch of the upcoming tone, providing a concrete computational mechanism for prediction. These results establish humans' ability to make valid predictions based on temporal regularities inherent in naturalistic stimuli and further reveal the neural mechanisms underlying such predictive computation.SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how the brain predicts upcoming events in the environment. To date, this question has primarily been addressed in experiments using relatively simple stimulus sequences. Here, we studied predictive processing in the human brain using auditory tone sequences that exhibit temporal statistical regularities similar to those found in natural stimuli. We observed that humans are able to form valid predictions based on such complex temporal statistical regularities. We further show that neural response to a given tone in the sequence reflects integration over the preceding tone sequence and that this history dependence forms the foundation for prediction. These findings deepen our understanding of how humans form predictions in an ecologically valid environment.


Subject(s)
Anticipation, Psychological/physiology , Nerve Net/physiology , Acoustic Stimulation , Adult , Algorithms , Auditory Perception/physiology , Female , Humans , Magnetoencephalography , Male , Pitch Perception/physiology , Psychomotor Performance/physiology , Young Adult
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2014-2017, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060291

ABSTRACT

The analysis of the temporal dynamics in intrapartum fetal heart rate (FHR), aiming at early detection of fetal acidosis, constitutes an intricate signal processing task, that continuously receives significant research efforts. Entropy and entropy rates, envisaged as measures of complexity, often computed via popular implementations referred to as Approximate Entropy (ApEn) or Sample Entropy (SampEn), have regularly been reported as significant features for intrapartum FHR analysis. The present contribution aims to show how mutual information enhances characterization of FHR temporal dynamics and improves fetal acidosis detection performance. To that end, mutual information is first connected to ApEn and SampEn both conceptually and with respect to estimation procedure. Second, mutual information, ApEn and SampEn are computed on a large (≃ 1000 subjects) and documented database of FHR data, collected in a French academic hospital. Reported results show that the use of mutual information permits to significantly outperform ApEn and SampEn for acidosis detection, during any stage of labor.


Subject(s)
Heart Rate, Fetal , Acidosis , Entropy , Female , Humans , Labor, Obstetric , Pregnancy , Signal Processing, Computer-Assisted
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3769-3772, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060718

ABSTRACT

Scale-free dynamics is nowadays a massively used paradigm to model infraslow macroscopic brain activity. Multifractal analysis is becoming the standard tool to characterize scale-free dynamics. It is commonly used on various modalities of neuroimaging data to evaluate whether arrhythmic fluctuations in ongoing or evoked brain activity are related to pathologies (Alzheimer, epilepsy) or task performance. The success of multifractal analysis in neurosciences remains however so far contrasted: While it lead to relevant findings on M/EEG data, less clear impact was shown when applied to fMRI data. This is mostly due to their poor time resolution and very short duration as well as to the fact that analysis remains performed voxelwise. To take advantage of the large amount of voxels recorded jointly in fMRI, the present contribution proposes the use of a recently introduced Bayesian formalism for multifractal analysis, that regularizes the estimation of the multifractality parameter of a given voxel using information from neighbor voxels. The benefits of this regularized multifractal analysis are illustrated by comparison against classical multifractal analysis on fMRI data collected on one subject, at rest and during a working memory task: Though not yet statistically significant, increased multifractality is observed in task-negative and task-positive networks, respectively.


Subject(s)
Magnetic Resonance Imaging , Bayes Theorem , Brain , Memory, Short-Term , Rest
SELECTION OF CITATIONS
SEARCH DETAIL
...