Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
2.
Brain ; 147(1): 224-239, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37647766

ABSTRACT

Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the ß3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.


Subject(s)
Epilepsy, Generalized , Epilepsy , Movement Disorders , Animals , Humans , Infant, Newborn , Gain of Function Mutation , Mutation/genetics , Epilepsy/genetics , Seizures , Mammals/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism
3.
J Neurochem ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37621067

ABSTRACT

Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA ) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.

5.
Nat Commun ; 13(1): 1822, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383156

ABSTRACT

Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.


Subject(s)
Epilepsy , Gain of Function Mutation , Loss of Function Mutation , Receptors, GABA-A , Epilepsy/genetics , Humans , Phenotype , Receptors, GABA-A/genetics , Seizures
6.
Br J Pharmacol ; 178(24): 4826-4841, 2021 12.
Article in English | MEDLINE | ID: mdl-34384142

ABSTRACT

BACKGROUND AND PURPOSE: Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis-based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. EXPERIMENTAL APPROACH: We used the Scn1a+/- mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia-induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/- mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. KEY RESULTS: The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia-induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6-Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/- mice. CBGA was found to interact with numerous epilepsy-relevant targets including GPR55, TRPV1 channels and GABAA receptors. CONCLUSION AND IMPLICATIONS: These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis-based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class.


Subject(s)
Cannabidiol , Cannabis , Epilepsies, Myoclonic , Epilepsy , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Benzoates , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Epilepsies, Myoclonic/drug therapy , Epilepsy/drug therapy , Mice , NAV1.1 Voltage-Gated Sodium Channel , Receptors, Cannabinoid , Seizures/drug therapy
7.
Neuropharmacology ; 182: 108371, 2021 01.
Article in English | MEDLINE | ID: mdl-33122032

ABSTRACT

GABAA and glycine receptors mediate fast synaptic inhibitory neurotransmission. Despite studies showing that activation of cerebral glycine receptors could be a potential strategy in the treatment of epilepsy, few studies have assessed the effects of existing anticonvulsant therapies on recombinant or native glycine receptors. We, therefore, evaluated the actions of a series of anticonvulsants at recombinant human homo-oligomeric glycine receptor α1, α2 and α3 subtypes expressed in Xenopus oocytes using two-electrode voltage-clamp methods, and then assessed the most effective drug at native glycine receptors from entorhinal cortex neurons using whole-cell voltage-clamp recordings. Ganaxolone, tiagabine and zonisamide positively modulated glycine induced currents at recombinant homomeric glycine receptors. Of these, zonisamide was the most efficacious and exhibited an EC50 value ranging between 450 and 560 µM at α1, α2 and α3 subtypes. These values were not significantly different indicating a non-selective modulation of glycine receptors. Using a therapeutic concentration of zonisamide (100 µM), the potency of glycine was significantly shifted from 106 to 56 µM at α1, 185 to 112 µM at α2, and 245 to 91 µM at α3 receptors. Furthermore, zonisamide (100 µM) potentiated exogenous homomeric and heteromeric glycine mediated currents from layer II pyramidal cells of the lateral or medial entorhinal cortex. As therapeutic concentrations of zonisamide positively modulate recombinant and native glycine receptors, we propose that the anticonvulsant effects of zonisamide may, at least in part, be mediated via this action.


Subject(s)
Anticonvulsants/pharmacology , Receptors, Glycine/agonists , Receptors, Glycine/physiology , Zonisamide/pharmacology , Animals , Dose-Response Relationship, Drug , Entorhinal Cortex/drug effects , Entorhinal Cortex/physiology , Female , Glycine/pharmacology , Humans , Male , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Recombinant Proteins , Xenopus laevis
8.
Int J Biochem Cell Biol ; 126: 105806, 2020 09.
Article in English | MEDLINE | ID: mdl-32679079

ABSTRACT

Whole-genome sequencing has unearthed a substantial number of individual variants in ion channels associated with genetic disorders. Ligand-gated ion channels, including glycine, γ-aminobutyric acid type A and nicotinic acetylcholine receptors, have long been known to harbour genetic variants associated with hyperekplexia and different forms of epilepsy. In some of these cases, missense variants enhance or impair the intrinsic ability of the receptor to convert ligand binding to channel opening, or the efficacy of receptor activation. We review the current understanding of how ligand-gated ion channels are activated and the properties that define the efficacy of an agonist, and how these properties can be altered by disease-causing variants. Additionally, we consider the mechanisms defining drug modulation of receptors and consider how this may differ in genetic variants. This fundamental knowledge is likely to be essential in understanding how effective treatments will be for patients with genetic variants in ligand-gated ion channels.


Subject(s)
Genetic Diseases, Inborn/metabolism , Ligand-Gated Ion Channels/metabolism , Animals , Epilepsy/drug therapy , Epilepsy/metabolism , Genetic Diseases, Inborn/drug therapy , Humans
9.
Biochem Pharmacol ; 181: 114043, 2020 11.
Article in English | MEDLINE | ID: mdl-32445870

ABSTRACT

Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/drug therapy , Ion Channel Gating/drug effects , Ion Channels/antagonists & inhibitors , Peptides/pharmacology , Action Potentials/drug effects , Animals , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Humans , Ion Channel Gating/physiology , Ion Channels/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Spider Venoms/metabolism
10.
ACS Chem Neurosci ; 11(3): 344-355, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31898891

ABSTRACT

Nicotinic acetylcholine (nACh) receptors are pentameric ligand-gated ion channels that mediate fast synaptic transmission. The α4ß2 nACh receptor is highly expressed in the brain and exists in two functional stoichiometries: the (α4)2(ß2)3 and (α4)3(ß2)2 that differ by an ACh-binding site at the α4-α4 interface of (α4)3(ß2)2 receptors. Methyllycaconitine (MLA) is an nACh receptor antagonist, and while potent at both α7 and α4ß2 nACh receptors, it has a higher selectivity for the α7 nACh receptor. The anthranilate-succinimide ester side-chain is important for its activity and selectivity. Here we identify a simplified MLA analogue that contains only the A and E ring skeleton of MLA, AE succinimide, that binds close to the channel lumen to display insurmountable inhibition at α4ß2 nACh receptors. Although inhibition by AE succinimide was found to be voltage-dependent indicating a possible pore channel blocker, substituted-cysteine accessibility experiments indicated it did not bind between 2'-16' region of the channel pore. Instead, we found that upon binding and in the presence of ACh, there is a conformational change to the channel membrane that was identified when the compound was assessed against (α4 V13'C)ß2 nACh receptors. It was found that in the 3:2 stoichiometry the two adjacent α4 subunits containing 13' cysteine mutations formed a disulfide bond and occluded ion conductance. This was reversed by treatment with the reducing agent, dithiothreitol. Thus, AE succinimide has a different mechanism of inhibition to both MLA and other AE analogues, such as AE bicyclic alcohol, in that upon binding to an as yet unidentified site, AE succinimide in the presence of ACh induces a conformational change to the channel that generates a ligand-bound closed state.


Subject(s)
Aconitine/analogs & derivatives , Membrane Potentials/drug effects , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Succinimides/pharmacology , Acetylcholine/metabolism , Aconitine/pharmacology , Animals , Binding Sites/drug effects , Oocytes/drug effects , Oocytes/metabolism , Protein Subunits/metabolism , Receptors, Nicotinic/metabolism , Succinimides/chemistry , Xenopus laevis/metabolism , alpha7 Nicotinic Acetylcholine Receptor/drug effects , alpha7 Nicotinic Acetylcholine Receptor/metabolism
11.
Brain Commun ; 2(2): fcaa162, 2020.
Article in English | MEDLINE | ID: mdl-33585817

ABSTRACT

Variants in the GABRB3 gene encoding the ß3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.

12.
Epilepsia ; 60(11): 2224-2234, 2019 11.
Article in English | MEDLINE | ID: mdl-31625159

ABSTRACT

OBJECTIVE: Cannabidiol (CBD) has been approved by the US Food and Drug Administration (FDA) to treat intractable childhood epilepsies, such as Dravet syndrome and Lennox-Gastaut syndrome. However, the intrinsic anticonvulsant activity of CBD has been questioned due to a pharmacokinetic interaction between CBD and a first-line medication, clobazam. This recognized interaction has led to speculation that the anticonvulsant efficacy of CBD may simply reflect CBD augmenting clobazam exposure. The present study aimed to address the nature of the interaction between CBD and clobazam. METHODS: We examined whether CBD inhibits human CYP3A4 and CYP2C19 mediated metabolism of clobazam and N-desmethylclobazam (N-CLB), respectively, and performed studies assessing the effects of CBD on brain and plasma pharmacokinetics of clobazam in mice. We then used the Scn1a+/- mouse model of Dravet syndrome to examine how CBD and clobazam interact. We compared anticonvulsant effects of CBD-clobazam combination therapy to monotherapy against thermally-induced seizures, spontaneous seizures and mortality in Scn1a+/- mice. In addition, we used Xenopus oocytes expressing γ-aminobutyric acid (GABA)A receptors to investigate the activity of GABAA receptors when treated with CBD and clobazam together. RESULTS: CBD potently inhibited CYP3A4 mediated metabolism of clobazam and CYP2C19 mediated metabolism of N-CLB. Combination CBD-clobazam treatment resulted in greater anticonvulsant efficacy in Scn1a+/- mice, but only when an anticonvulsant dose of CBD was used. It is important to note that a sub-anticonvulsant dose of CBD did not promote greater anticonvulsant effects despite increasing plasma clobazam concentrations. In addition, we delineated a novel pharmacodynamic mechanism where CBD and clobazam together enhanced inhibitory GABAA receptor activation. SIGNIFICANCE: Our study highlights the involvement of both pharmacodynamic and pharmacokinetic interactions between CBD and clobazam that may contribute to its efficacy in Dravet syndrome.


Subject(s)
Anticonvulsants/pharmacokinetics , Cannabidiol/pharmacokinetics , Clobazam/pharmacokinetics , Epilepsies, Myoclonic/metabolism , Animals , Anticonvulsants/administration & dosage , Cannabidiol/administration & dosage , Clobazam/administration & dosage , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drug Interactions/physiology , Drug Therapy, Combination , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Humans , Mice , Mice, Transgenic , NAV1.1 Voltage-Gated Sodium Channel/genetics
13.
J Biol Chem ; 294(15): 6157-6171, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30728247

ABSTRACT

A number of epilepsy-causing mutations have recently been identified in the genes of the α1, ß3, and γ2 subunits comprising the γ-aminobutyric acid type A (GABAA) receptor. These mutations are typically dominant, and in certain cases, such as the α1 and ß3 subunits, they may lead to a mix of receptors at the cell surface that contain no mutant subunits, a single mutated subunit, or two mutated subunits. To determine the effects of mutations in a single subunit or in two subunits on receptor activation, we created a concatenated protein assembly that links all five subunits of the α1ß3γ2 receptor and expresses them in the correct orientation. We created nine separate receptor variants with a single-mutant subunit and four receptors containing two subunits of the γ2R323Q, ß3D120N, ß3T157M, ß3Y302C, and ß3S254F epilepsy-causing mutations. We found that the singly mutated γ2R323Q subunit impairs GABA activation of the receptor by reducing GABA potency. A single ß3D120N, ß3T157M, or ß3Y302C mutation also substantially impaired receptor activation, and two copies of these mutants within a receptor were catastrophic. Of note, an effect of the ß3S254F mutation on GABA potency depended on the location of this mutant subunit within the receptor, possibly because of the membrane environment surrounding the transmembrane region of the receptor. Our results highlight that precise functional genomic analyses of GABAA receptor mutations using concatenated constructs can identify receptors with an intermediate phenotype that contribute to epileptic phenotypes and that are potential drug targets for precision medicine approaches.


Subject(s)
Cell Membrane , Epilepsy , Mutation, Missense , Protein Subunits , Receptors, GABA-A , gamma-Aminobutyric Acid/metabolism , Amino Acid Substitution , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/pathology , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/pathology , Humans , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Xenopus laevis
14.
Pharmacol Res ; 139: 215-227, 2019 01.
Article in English | MEDLINE | ID: mdl-30472464

ABSTRACT

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a genetic form of epilepsy that is caused by mutations in several genes, including genes encoding for the α4 and ß2 subunits of the nicotinic acetylcholine (nACh) receptor. Pentameric α4ß2 nACh receptors are the most abundant nicotinic receptor in the mammalian brain and form two stoichiometries, the (α4)3(ß2)2 and (α4)2(ß2)3 receptors that differ in their physiological and pharmacological properties. The purpose of this study was to investigate how ADNFLE mutations ß2V287M, ß2V287L or α4T293I manifest themselves in different receptor stoichiometries. We expressed wild-type and mutant receptors in Xenopus oocytes and measured the response to ACh and other agonists at both receptor stoichiometries. For all three mutations, the efficacy of ACh at (α4)2(ß2)3 receptors was increased. At (α4)3(ß2)2 receptors, the efficacy of activation was increased both when two molecules of agonist, either ACh or the site-selective agonist sazetidine-A, were bound at the α4-ß2 interfaces, and when a third ACh molecule was bound at the α4-α4 site. Regardless of stoichiometry, the mutations increased the current elicited by low concentrations of ACh. Further, the smoking cessation agents, nicotine, varenicline and cytisine increased activation of mutant (α4)3(ß2)2 receptors, while only nicotine increased activation of mutant (α4)2(ß2)3 receptors. Chronic exposure of all agonists reduced ACh-activation levels at low and high ACh concentrations. From this, we concluded that mutations that cause ADNFLE manifest themselves in a change in efficacy regardless of the stoichiometry of the receptor.


Subject(s)
Epilepsy, Frontal Lobe/genetics , Receptors, Nicotinic/physiology , Acetylcholine/pharmacology , Alkaloids/pharmacology , Animals , Azocines/pharmacology , Epilepsy, Frontal Lobe/physiopathology , Female , Mutation , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Oocytes/physiology , Quinolizines/pharmacology , Varenicline/pharmacology , Xenopus laevis
15.
PLoS One ; 11(8): e0161154, 2016.
Article in English | MEDLINE | ID: mdl-27552221

ABSTRACT

The α4ß2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(ß2)2 and (α4)2(ß2)3. A distinct feature of the (α4)3(ß2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-ß2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-ß2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-ß2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(ß2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors.


Subject(s)
Acetylcholine/metabolism , Ion Channel Gating/genetics , Oocytes/drug effects , Receptors, Nicotinic/genetics , Acetylcholine/pharmacology , Animals , Azetidines/pharmacology , Binding Sites , Cell Membrane/drug effects , Cell Membrane/genetics , Humans , Ligands , Molecular Conformation/drug effects , Oocytes/growth & development , Oocytes/metabolism , Oxadiazoles/pharmacology , Protein Binding , Protein Isoforms/drug effects , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Xenopus laevis/genetics , Xenopus laevis/growth & development
16.
PLoS One ; 11(6): e0157700, 2016.
Article in English | MEDLINE | ID: mdl-27332705

ABSTRACT

Extracts of the pepper plant kava (Piper methysticum) are effective in alleviating anxiety in clinical trials. Despite the long-standing therapeutic interest in kava, the molecular target(s) of the pharmacologically active constituents, kavalactones have not been established. γ-Aminobutyric acid type A receptors (GABAARs) are assumed to be the in vivo molecular target of kavalactones based on data from binding assays, but evidence in support of a direct interaction between kavalactones and GABAARs is scarce and equivocal. In this study, we characterised the functional properties of the major anxiolytic kavalactone, kavain at human recombinant α1ß2, ß2γ2L, αxß2γ2L (x = 1, 2, 3 and 5), α1ßxγ2L (x = 1, 2 and 3) and α4ß2δ GABAARs expressed in Xenopus oocytes using the two-electrode voltage clamp technique. We found that kavain positively modulated all receptors regardless of the subunit composition, but the degree of enhancement was greater at α4ß2δ than at α1ß2γ2L GABAARs. The modulatory effect of kavain was unaffected by flumazenil, indicating that kavain did not enhance GABAARs via the classical benzodiazepine binding site. The ß3N265M point mutation which has been previously shown to profoundly decrease anaesthetic sensitivity, also diminished kavain-mediated potentiation. To our knowledge, this study is the first report of the functional characteristics of a single kavalactone at distinct GABAAR subtypes, and presents the first experimental evidence in support of a direct interaction between a kavalactone and GABAARs.


Subject(s)
Anti-Anxiety Agents/pharmacology , Kava/chemistry , Pyrones/pharmacology , Receptors, GABA-A/metabolism , Anesthetics/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Benzodiazepines/pharmacology , Diazepam/pharmacology , Drug Interactions , Drug Synergism , Etomidate/pharmacology , Flumazenil/pharmacology , Humans , Mutation/genetics , Propofol/pharmacology , Protein Subunits/metabolism , Pyrones/chemistry , Receptors, GABA-A/genetics , Xenopus laevis
17.
PLoS One ; 11(5): e0156618, 2016.
Article in English | MEDLINE | ID: mdl-27244450

ABSTRACT

The loop C hydrophilic residue, threonine 244 lines the orthosteric binding site of ρ1 GABAC receptors was studied by point mutation into serine, alanine and cysteine, and tested with GABA, some representative partial agonists and antagonists. Thr244 has a hydroxyl group essential for GABA activity that is constrained by the threonine methyl group, orienting it toward the binding site. Significant decreases in activation effects of the studied ligands at ρ1 T244S mutant receptors, suggests a critical role for this residue. Results of aliphatic and heteroaromatic partial agonists demonstrate different pharmacological effects at ρ1 T244S mutant receptors when co-applied with GABA EC50 responses. ρ1 T244A and ρ1 T244C mutant receptors have minimal sensitivity to GABA at high mM concentrations, whereas, the ρ1 WT partial agonists, ß-alanine and MTSEA demonstrate more efficacy and potency, respectively, than GABA at these mutant receptors. This study explores the role of Thr244 in the binding of agonists as an initial step during channel gating by moving loop C towards the ligand.


Subject(s)
GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Ligand-Gated Ion Channels/metabolism , Receptors, GABA/genetics , Amino Acid Sequence/genetics , Amino Acids, Neutral/pharmacology , Animals , Binding Sites/genetics , Glycine/pharmacology , Humans , Isonicotinic Acids/pharmacology , Molecular Docking Simulation , Patch-Clamp Techniques , Point Mutation/genetics , Protein Conformation , Receptors, GABA/metabolism , Xenopus laevis , beta-Alanine/pharmacology
18.
Sci Rep ; 6: 28674, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27346730

ABSTRACT

Zolpidem is not a typical GABAA receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1ß3 GABAA receptors in either the 3α1:2ß3 or 2α1:3ß3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a ß3-ß3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn(2+). At the 3α1:2ß3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3ß3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1ß3 (3α1:2ß3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target.


Subject(s)
GABA-A Receptor Agonists/chemistry , Pyridines/chemistry , Receptors, GABA-A/chemistry , Animals , Binding Sites , GABA-A Receptor Agonists/pharmacology , Humans , Pyridines/pharmacology , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Xenopus laevis , Zolpidem
19.
Pharmacol Res ; 111: 563-576, 2016 09.
Article in English | MEDLINE | ID: mdl-27178730

ABSTRACT

Extrasynaptically located γ-aminobutyric acid (GABA) receptors type A are often characterized by the presence of a δ subunit in the receptor complex. δ-Containing receptors respond to low ambient concentrations of GABA, or respond to spillover of GABA from the synapse, and give rise to tonic inhibitory currents. In certain brain regions, e.g. thalamocortical neurons, tonic inhibition is estimated to represent the majority of total GABA-mediated inhibition, which has raised substantial interest in extrasynaptic receptors as potential drug targets. Thalamocortical neurons typically express α4ß2/3δ receptors, however, these have proven difficult to study in recombinant in vitro expression systems due to the inherently low current levels elicited in response to GABA. In this study, we sought to characterize a range of agonists and positive allosteric modulators at α4ß2δ and α4ß2γ2 receptors. All tested agonists (GABA, THIP, muscimol, and taurine) displayed between 8 and 22 fold increase in potency at the α4ß2δ receptor. In contrast, modulatory potencies of steroids (allopregnanolone, THDOC and alfaxalone), anesthetics (etomidate, pentobarbital) and Delta-Selective agents 1 and 2 (DS1 and DS2) were similar at α4ß2δ and α4ß2γ2 receptors. When evaluating modulatory efficacies, the neurosteroids and anesthetics displayed highest efficacy at α4ß2γ2 receptors whereas DS1 and in particular DS2 had highest efficacy at α4ß2δ receptors. Overall, several key messages emerged: (i) none of the tested compounds displayed significant selectivity and a great need for identifying new δ-selective compounds remains; (ii) α4ß2δ and α4ß2γ2 receptors have such divergent intrinsic activation properties that valid comparisons of modulator efficacies are at best challenging.


Subject(s)
Receptors, GABA-A/physiology , Anesthetics/pharmacology , Animals , DNA, Complementary/genetics , Female , GABA-A Receptor Agonists/pharmacology , Humans , Oocytes/drug effects , Oocytes/physiology , Protein Subunits/genetics , Protein Subunits/physiology , Receptors, GABA-A/genetics , Steroids/pharmacology , Xenopus laevis
20.
Biochem Pharmacol ; 103: 98-108, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26774457

ABSTRACT

GABAA receptors that contain the α4 and δ subunits are thought to be located extrasynaptically, mediating tonic currents elicited by low concentrations of GABA. These α4ßδ receptors are modulated by neurosteroids and certain anesthetics, identifying them as important drug targets in research. However, pharmacological studies on these receptors have often yielded variable results, possibly due to the expression of receptors in different stoichiometries or arrangements. In this study, we injected different ratios of α4, ß2 and δ cRNA into Xenopus oocytes and measured the sensitivity to GABA and DS2 activation of the resulting receptor populations. By creating a matrix of RNA injection ratios from stock RNA concentrations, we were able to compare the changes in pharmacology between injection ratios where the ratio of only one subunit was altered. We identified two distinct populations of receptors, the first with an EC50 value of approximately 100 nM to GABA, a low Hill slope of approximately 0.3 and substantial direct activation by DS2. The second population had an EC50 value of approximately 1 µM to GABA, a steeper Hill slope of 1 and little direct activation, but substantial potentiation, by DS2. The second population was formed with high α4 ratios and low ß2 ratios, but altering the ratio of δ subunit injected had little effect. We propose that receptors with high sensitivity to GABA and direct activation by DS2 are the result of a greater number of ß2 subunits being incorporated into the receptor.


Subject(s)
Oocytes/metabolism , Receptors, GABA-A/metabolism , Animals , Benzamides/pharmacology , Female , Humans , Imidazoles/pharmacology , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, GABA-A/genetics , Xenopus laevis , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...