Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 14(1): 274-299, 2024.
Article in English | MEDLINE | ID: mdl-38323292

ABSTRACT

The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.

2.
Gut Microbes ; 16(1): 2292224, 2024.
Article in English | MEDLINE | ID: mdl-38108125

ABSTRACT

There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.


Subject(s)
Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Animals , Female , Male , Analgesics, Opioid/adverse effects , Gastrointestinal Microbiome/genetics , Dysbiosis/chemically induced , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Prenatal Exposure Delayed Effects/microbiology , Methadone , Pain
3.
mSystems ; 8(6): e0051023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37916830

ABSTRACT

IMPORTANCE: This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cell Cycle/genetics , Cell Division , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Sirtuin 2/genetics
4.
Br J Pharmacol ; 180(10): 1362-1378, 2023 05.
Article in English | MEDLINE | ID: mdl-36562107

ABSTRACT

BACKGROUND AND PURPOSE: Opioids are commonly used for the management of cancer-associated pain and chemotherapy-induced diarrhoea. The chemotherapeutic irinotecan (CPT-11) causes severe gastrointestinal (GI) toxicity due to deconjugation of inactive metabolite SN-38 glucuronide (SN-38G) by bacterial ß-glucuronidases to the active 7-ethyl-10-hydroxycamptothecin (SN-38). Opioids are known to cause gut microbial dysbiosis, this study evaluated whether CPT-11 anti-tumour efficacy and GI toxicity are exacerbated by opioid co-administration. EXPERIMENTAL APPROACH: Eight-week-old C57BL/6 male mice were co-administration with CPT-11 ± opioid. 16S rRNA sequencing was used for gut microbiome analysis. LC-MS analyses of plasma and intestinal extracts were performed to investigate the pharmacokinetic profile of CPT-11. Histological analysis and quantitative real-time polymerase chain reaction were used to determine the severity of intestinal tissue damage. Human liver microsome In vitro assay was performed to confirm the effects of opioids on CPT-11 metabolism. KEY RESULTS: Gut microbiome analysis showed that morphine treatment induced enrichment of ß-glucuronidase-producing bacteria in the intestines of CPT-11-treated mice, resulting in SN-38 accumulation and exacerbation of GI toxicity in the small intestine. Oral administration of both antibiotics and glucuronidase inhibitor protected mice against GI toxicity induced with CPT-11 and morphine co-administration, implicating a microbiome-dependent mechanism. Additionally, morphine and loperamide decreased the plasma concentration of SN-38 and compromised CPT-11 anti-tumour efficacy, this seemed to be microbiome independent. CONCLUSION AND IMPLICATIONS: Gut microbiota play a significant role in opioid and chemotherapeutic agent drug-drug interactions. Inhibition of gut microbial glucuronidase may also prevent adverse GI effects of CPT-11 in patients on opioids.


Subject(s)
Antineoplastic Agents, Phytogenic , Neoplasms , Humans , Mice , Male , Animals , Irinotecan , Analgesics, Opioid/pharmacology , Dysbiosis , Disease Models, Animal , RNA, Ribosomal, 16S , Antineoplastic Agents, Phytogenic/toxicity , Mice, Inbred C57BL , Camptothecin/toxicity , Bacteria , Glucuronidase/metabolism , Glucuronidase/pharmacology , Morphine Derivatives/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...