Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 14(6): 645-662, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30702807

ABSTRACT

Since the discovery of a flavin-dependent thymidylate synthase (ThyX or FDTS) that is absent in humans but crucial for DNA biosynthesis in a diverse group of pathogens, the enzyme has been pursued for the development of new antibacterial agents against Mycobacterium tuberculosis, the causative agent of the widespread infectious disease tuberculosis (TB). In response to a growing need for more effective anti-TB drugs, we have built upon our previous screening efforts and report herein an optimization campaign of a novel series of inhibitors with a unique inhibition profile. The inhibitors display competitive inhibition toward the methylene tetrahydrofolate cofactor of ThyX, enabling us to generate a model of the compounds bound to their target, thus offering insight into their structure-activity relationships.


Subject(s)
Enzyme Inhibitors , Mycobacterium tuberculosis/drug effects , Oxazines , Thymidylate Synthase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Oxazines/chemical synthesis , Oxazines/chemistry , Oxazines/pharmacology , Structure-Activity Relationship
2.
Chembiochem ; 18(24): 2408-2415, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29024251

ABSTRACT

A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed).


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/metabolism , Purine Nucleotides/metabolism , 5-Methylcytosine , Azaguanine , Base Pairing , Escherichia coli/enzymology , Escherichia coli/genetics , Hypoxanthine
3.
Biochem Pharmacol ; 135: 69-78, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28359706

ABSTRACT

Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), is an infection that is responsible for roughly 1.5 million deaths per year. The situation is further complicated by the wide-spread resistance to the existing first- and second-line drugs. As a result of this, it is urgent to develop new drugs to combat the resistant bacteria as well as have lower side effects, which can promote adherence to the treatment regimens. Targeting the de novo synthesis of thymidylate (dTMP) is an important pathway to develop drugs for TB. Although Mtb carries genes for two families of thymidylate synthases (TS), ThyA and ThyX, only ThyX is essential for its normal growth. Both enzymes catalyze the conversion of uridylate (dUMP) to dTMP but employ a different catalytic approach and have different structures. Also, ThyA is the only TS found in humans. This is the rationale for identifying selective inhibitors against ThyX. We exploited the NADPH oxidation to NADP+ step, catalyzed by ThyX, to develop a spectrophotometric biochemical assay. Success of the assay was demonstrated by its effectiveness (average Z'=0.77) and identification of selective ThyX inhibitors. The most potent compound is a tight-binding inhibitor with an IC50 of 710nM. Its mechanism of inhibition is analyzed in relation to the latest findings of ThyX mechanism and substrate and cofactor binding order.


Subject(s)
Antitubercular Agents/metabolism , Drug Discovery/methods , Enzyme Inhibitors/metabolism , Mycobacterium tuberculosis/enzymology , Thymidylate Synthase/antagonists & inhibitors , Thymidylate Synthase/metabolism , Antitubercular Agents/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Mycobacterium tuberculosis/drug effects , Protein Binding/drug effects , Protein Binding/physiology
4.
Bioorg Med Chem ; 24(8): 1778-85, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26968651

ABSTRACT

As part of a selection strategy for artificial nucleic acids (XNA) (to be considered as potential new information systems in vivo), we have carried out a modelling study on cyclohexanyl nucleic acids (CNA) duplexes and hairpins. CNA may form a duplex as well as hairpin structures, having the carbocyclic nucleosides in the (4)C1 conformation (with equatorial basis). The geometry of ds CNA is close to that of a HNA:RNA duplex. We demonstrated that CNA triphosphates function as a substrate for polymerases. Modelling experiments indicate that the monomers are probably presented to the polymerase in the (1)C4 conformation.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , RNA/chemistry , DNA/chemical synthesis , DNA/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Models, Molecular , Nucleic Acid Conformation , Polyphosphates/chemistry , RNA/chemical synthesis , RNA/metabolism , Static Electricity
5.
Chemistry ; 21(13): 5009-22, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25684598

ABSTRACT

The synthesis, base-pairing properties and in vitro and in vivo characteristics of 5-methyl-isocytosine (isoC(Me) ) and isoguanine (isoG) nucleosides, incorporated in an HNA(h) (hexitol nucleic acid)-DNA(d) mosaic backbone, are described. The required h-isoG phosphoramidite was prepared by a selective deamination as a key step. As demonstrated by Tm measurements the hexitol sugar showed slightly better mismatch discrimination against dT. The d-isoG base mispairing follows the order T>G>C while the h-isoG base mispairing follows the order G>C>T. The h- and d-isoC(Me) bases mainly mispair with G. Enzymatic incorporation experiments show that the hexitol backbone has a variable effect on selectivity. In the enzymatic assays, isoG misincorporates mainly with T, and isoC(Me) misincorporates mainly with A. Further analysis in vivo confirmed the patterns of base-pair interpretation for the deoxyribose and hexitol isoC(Me) /isoG bases in a cellular context, through incorporation of the bases into plasmidic DNA. Results in vivo demonstrated that mispairing and misincorporation was dependent on the backbone scaffold of the base, which indicates rational advances towards orthogonality.


Subject(s)
5-Methylcytosine/analogs & derivatives , Guanine/chemistry , Nucleosides/chemistry , 5-Methylcytosine/chemistry , Molecular Structure
6.
Chembiochem ; 13(16): 2439-44, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23023962

ABSTRACT

Thermostable bacterial polymerases like Taq, Therminator and Vent exo(-) are able to perform DNA synthesis by using modified DNA precursors, a property that is exploited in several therapeutic and biotechnological applications. Viral polymerases are also known to accept modified substrates, and this has proven crucial in the development of antiviral therapies. However, non-thermostable polymerases of bacterial origin, or engineered variants, that have similar substrate tolerance and could be used for synthetic biology purposes remain to be identified. We have identified the α subunit of Escherichia coli polymerase III (Pol III α) as a bacterial polymerase that is able to recognise and process as substrates several pyrophosphate-modified dATP analogues in place of its natural substrate dATP for template-directed DNA synthesis. A number of dATP analogues featuring a modified pyrophosphate group were able to serve as substrates during enzymatic DNA synthesis by Pol III α. Features such as the presence of potentially chelating chemical groups and the size and spatial flexibility of the chemical structure seem to be of major importance for the modified leaving group to play its role during the enzymatic reaction. In addition, we could establish that if the pyrophosphate group is altered, deoxynucleotide incorporation proceeds with an efficiency varying with the nature of the nucleobase. Our results represent a great step towards the achievement of a system of artificial DNA synthesis hosted by E. coli and involving the use of altered nucleotide precursors for nucleic acid synthesis.


Subject(s)
DNA Polymerase III/metabolism , Deoxyribonucleotides/chemistry , Escherichia coli/enzymology , DNA/biosynthesis , DNA Polymerase III/chemistry , DNA Polymerase III/isolation & purification , Deoxyribonucleotides/metabolism , Kinetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...