Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216511

ABSTRACT

The modification of chitosan represents a challenging task in obtaining biopolymeric materials with enhanced removal capacity for heavy metals. In the present work, the adsorption characteristics of chitosan modified with carboxyl groups (CTS-CAA) towards copper (II) and zinc (II) ions have been tested. The efficacy of the synthesis of CTS-CAA has been evaluated by studying various properties of the modified chitosan. Specifically, the functionalized chitosan has been characterized by using several techniques, including thermal analyses (differential scanning calorimetry and thermogravimetry), spectroscopies (FT-IR, XRD), elemental analysis, and scanning electron microscopy. The kinetics and the adsorption isotherms of CTS-CAA towards both Cu (II) and Zn (II) have been determined in the aqueous solvent under variable pH. The obtained results have been analyzed by using different adsorption models. In addition, the experiments have been conducted at variable temperatures to explore the thermodynamics of the adsorption process. The regeneration of CTS-CAA has been investigated by studying the desorption process using different eluents. This paper reports an efficient protocol to synthesize chitosan-based material perspective as regenerative adsorbents for heavy metals.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Copper/chemistry , Ions/chemistry , Water/chemistry , Zinc/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared/methods , Thermodynamics , Water Pollutants, Chemical/chemistry , Water Purification/methods
2.
Int J Biol Macromol ; 139: 153-160, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31356952

ABSTRACT

A new adsorbent, sulfated crosslinked chitosan (SGCH), has been synthesized for the effective extraction of beryllium ions from their aqueous solutions. In recent times, beryllium extraction has been of great importance because beryllium can be used in many applications such as in nuclear reactor, heat shields, high-technology ceramics, alloys and electronic heat sinks. SGCH has been synthesized by two successive phases. The first is the conversion of chitosan (CH) into non-soluble cross-linked chitosan (GCH) through the interaction between chitosan and glutaraldehyde. The second step is the formation of functional sulfonate groups onto the adsorbent material through the interaction of GCH with chlorosulfonic acid (sulfating agent). The role played by the sulfonate groups in the adsorption process was analyzed using FT-IR and SEM. Also, the role played by the solution pH, time, beryllium concentration and temperature on the batch adsorption process was investigated. Our results point to the successful preparation of SGCH adsorbent with high affinity for beryllium ions. The maximum sorption values of beryllium ions on the investigated biosorbent is 40.6 mg/g. The desorption of the loaded beryllium ions from the SGCH was achieved by using 1.5 M urea acidified by 0.6 M H2SO4.


Subject(s)
Beryllium/chemistry , Beryllium/isolation & purification , Chitosan/chemistry , Chitosan/chemical synthesis , Sulfonic Acids/chemistry , Adsorption , Chemistry Techniques, Synthetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...