Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 341(6): 658-671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594788

ABSTRACT

Florpyrauxifen-benzyl (FPB) is a new arylpicolinate systemic herbicide that has been used to control or suppress the majority of herbicide-resistant biotype weeds in rice. To our knowledge, the impact of FPB on the immune system remains undetected thus far. Hence, this work aimed to address the toxic effects of FPB and the possible related mechanisms on the spleen of exposed mice. Initially, an acute toxicological test was performed to ascertain the median lethal dose (LD50) of FPB for 24 h which was found to be 371.54 mg/kg b.wt. For mechanistic evaluation of FPB toxicity, three sublethal doses (1/20th, 1/10th, and 1/5th LD50) were orally administered to mice for 21 consecutive days. Changes in spleen relative weight, oxidative status, apoptotic and inflammatory markers, histopathological alterations were evaluated. Following the FPB exposure, significant (p < 0.05) decline in spleen index, apoptotic features, histolopathological changes were observed. Additionally, excessive oxidative stress in spleen tissues was monitored by downregulating antioxidant enzymes and upregulating the oxidant parameters. Furthermore, exposure to FPB resulted in notable activation of the NF-қB signaling pathway, accompanied by elevated levels of pro-inflammatory cytokines (namely, IL-1ß and TNF-α) as well as CD3 and CD19 levels have decreased significantly in spleen tissues. Collectively, FPB exposure exhibited apoptosis, oxidative stress, immunosuppression, and inflammatory response in a dose-dependent manner, leading to spleen tissue damage and immunotoxicity. Further studies on FPB is recommended to outstand its hazards on ecosystems.


Subject(s)
Herbicides , Spleen , Animals , Spleen/drug effects , Spleen/pathology , Herbicides/toxicity , Mice , Male , Oxidative Stress/drug effects , Apoptosis/drug effects , Lethal Dose 50 , Cytokines/metabolism
2.
Biomaterials ; 301: 122249, 2023 10.
Article in English | MEDLINE | ID: mdl-37506511

ABSTRACT

The heterogeneous cell population in the stromal microenvironment is considered to be attributed to the multiple sources from which the cells originate. Tumor associated myoepithelial cells (TAMEs) are one of the most important populations in the tumor microenvironment (TME) especially in breast cancer. On the other hand, cancer stem cells (CSCs) have previously been described to be the origin of tumor-associated cellular components in the TME. We prepared a cancer stem cell model converting mouse-induced pluripotent stem cells (miPSCs) in the presence of conditioned medium of breast cancer cell line MDA-MB-231 cells. The converted cells developed tumors progressing into invasive carcinoma with ductal carcinoma in situ (DCIS) like structure when transplanted into mouse mammary fat pads. The primary cultured cells from the tumor further exhibited markers of CSC such as Sox2, Oct3/4, - CD133 and EpCAM, and mammary gland-related TAME markers such as α-smooth muscle actin, cytokeratin 8, whey acidic protein, prolactin receptor and progesterone receptor as well. These results indicated that the CSCs could be an origin of TAMEs contributing to mammary gland epithelial cell differentiation and the progression to invasive carcinoma during tumor development. The gene expression profiles confirmed the enhanced signaling pathways of PI3K/AKT and MAPK, which have been demonstrated to be enriched in the CSC models, together with the estrogen receptor signaling which was peculiar to mammary gland-derived character.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Mice , Animals , Carcinoma, Intraductal, Noninfiltrating/pathology , Tumor Microenvironment , Phosphatidylinositol 3-Kinases , Biomarkers, Tumor , Neoplastic Stem Cells/pathology
3.
J Cell Biochem ; 123(7): 1183-1196, 2022 07.
Article in English | MEDLINE | ID: mdl-35578735

ABSTRACT

Human Cripto-1 is a member of the epidermal growth factor (EGF)-Cripto-FRL-1-Cryptic (CFC) family family and performs critical roles in cancer and various pathological and developmental processes. Recently we demonstrated that a soluble form of Cripto-1 suppresses the self-renewal and enhances the differentiation of cancer stem cells (CSCs). A functional form of soluble Cripto-1 was found to be difficult to obtain because of the 12 cysteine residues in the protein which impairs the folding process. Here, we optimized the protocol for a T7 expression system, purification from inclusion bodies under denatured conditions refolding of a His-tagged Cripto-1 protein. A concentrations of 0.2-0.4 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) at 37°C was found to be the optimal concentration for Cripto-1 expression while imidazole at 0.5 M was the optimum concentration to elute the Cripto-1 protein from a Ni-column in the smallest volume. Cation exchange column chromatography of the Cripto-1 protein in the presence of 8 M urea exhibited sufficient elution profile at pH 5, which was more efficient at recovery. The recovery of the protein reached to more than 26.6% after refolding with arginine. The purified Cripto-1 exhibited high affinity to the anti-ALK-4 antibody and suppressed sphere forming ability of CSCs at high dose and induced cell differentiation.


Subject(s)
Neoplasms , Neoplastic Stem Cells , Cell Differentiation , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/pharmacology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
4.
Cell Biochem Funct ; 40(3): 310-320, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35285948

ABSTRACT

Diphenyleneiodonium (DPI) has long been evaluated as an anticancer drug inhibiting NADPH oxidase, the IC50 in several cancer cell lines was reported 10 µM, which is too high for efficacy. In this study, we employed miPS-Huh7cmP cells, which we previously established as a cancer stem cell (CSC) model from induced pluripotent stem cells, to reevaluate the efficacy of DPI because CSCs are currently one of the main foci of therapeutic strategy to treat cancer, but generally considered resistant to chemotherapy. As a result, the conventional assay for the cell growth inhibition by DPI accounted for an IC50 at 712 nM that was not enough to define the effectiveness as an anticancer drug. Simultaneously, the wound-healing assay revealed an IC50 of approximately 500 nM. Comparatively, the IC50 values shown on sphere formation, colony formation, and tube formation assays were 5.52, 12, and 8.7 nM, respectively. However, these inhibitory effects were not observed by VAS2780, also a reputed NADPH oxidase inhibitor. It is noteworthy that these three assays are evaluating the characteristic of CSCs and are designed in the three-dimensional (3D) culture methods. We concluded that DPI could be a suitable candidate to target mitochondrial respiration in CSCs. We propose that the 3D culture assays are more efficient to screen anti-CSC drug candidates and better mimic tumor microenvironment when compared to the adherent monolayer of 2D culture system used for a conventional assay, such as cell growth inhibition and wound-healing assays.


Subject(s)
Antineoplastic Agents , Induced Pluripotent Stem Cells , Neoplasms , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , NADPH Oxidases/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Onium Compounds
5.
Adv Exp Med Biol ; 1393: 83-101, 2022.
Article in English | MEDLINE | ID: mdl-36587303

ABSTRACT

Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Differentiation , Phenotype , Tumor Microenvironment/genetics
6.
Biochem Biophys Res Commun ; 583: 49-55, 2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34735879

ABSTRACT

Cancer stem cells (CSCs) are responsible for cancer initiation, drug resistance, and aggressive tumor phenotypes. Our lab has established a novel method to induce CSCs from induced pluripotent stem (iPS) cells in a microenvironment mimicking chronic inflammation. The converted cells acquired CSC characteristics and developed malignant tumors. Recently, we demonstrated that nonmutagenic chemical inhibitors accelerated the conversion of mouse iPS (miPS) cells into CSCs. Here, we investigated the effects of AZD-6244, a MEK1/2-specific inhibitor, on the conversion of iPS cells into CSCs. The miPS cells were cultured for one week in the presence of the conditioned medium (CM) of Lewis lung carcinoma (LLC) cells and AZD-6244, PD0325901, a pan-MEK inhibitor, or GDC-0879, a B-Raf inhibitor. As a result, AZD-6244 enhanced the conversion of iPS cells into CSCs and upregulated AKT phosphorylation as same as GDC-0879 and PD0325901. The converted cells maintained their self-renewal ability and stemness gene expression. The expression of the CSC markers CD24, CD44 and CD133 was higher in the cells cultured with MAPK inhibitors than in those cultured without MAPK inhibitors. Moreover, converted cells gained migration and invasion abilities assessed by in vitro assays. Therefore, the inhibition of MEK1/2 was found to be critical for the conversion of normal stem cells into CSCs in the tumor-inducing microenvironment.

7.
Am J Cancer Res ; 11(7): 3475-3495, 2021.
Article in English | MEDLINE | ID: mdl-34354856

ABSTRACT

Breast cancer is the first common cause of cancer-related death in women worldwide. Since the malignancy and aggressiveness of breast cancer have been correlated with the presence of breast cancer stem cells, the establishment of a disease model with cancer stem cells is required for the development of a novel therapeutic strategy. Here, we aimed to evaluate the availability of cancer stem cell models developed from mouse induced pluripotent stem cells with the conditioned medium of different subtypes of breast cancer cell lines, the hormonal-responsive T47D cell line and the triple-negative breast cancer BT549 cell line, to generate in vivo tumor models. When transplanted into the mammary fat pads of BALB/c nude mice, these two model cells formed malignant tumors exhibiting pronounced histopathological characteristics similar to breast cancers. Serial transplantation of the primary cultured cells into mammary fat pads evoked the same features of breast cancer, while this result was perturbed following subcutaneous transplantation. The tumors formed in the mammary fat pads exhibited immune reactivities to prolactin receptor, progesterone receptor, green florescent protein, Ki67, CD44, estrogen receptor α/ß and cytokeratin 8, while all of the tumors and their derived primary cells exhibited immunoreactivity to estrogen receptor α/ß and cytokeratin 8. Cancer stem cells can be developed from pluripotent stem cells via the secretory factors of cancer-derived cells with the capacity to inherit tissue specificity. However, cancer stem cells should be plastic enough to be affected by the microenvironment of specific tissues. In summary, we successfully established a breast cancer tumor model using mouse induced pluripotent stem cells developed from normal fibroblasts without genetic manipulation.

8.
Cancer Lett ; 521: 142-154, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34455015

ABSTRACT

We previously demonstrated the conversion of normal stem cells, including induced pluripotent stem cells (iPSCs), into cancer stem cells (CSCs) without genetic manipulation. Herein, we designed a meta-analysis to assess gene expression profiles in different breast cancer cell lines focusing on the secretory factors responsible for conversion. As a result, fibroblast growth factor 2 (FGF2) was found to be the best candidate in T47D and BT549 cells, of which conditioned medium was previously successful in inducing CSCs. When treated with 3.1 µg/ml FGF2, mouse iPSCs not only maintained survival without LIF for three weeks but also acquired growth ability independent of FGF2. The resultant cells exhibited expression of stemness and cancer stem cell markers, sphere-forming ability, differentiation, and tumorigenicity with malignancy. The primary cultures of the tumor confirmed the signatures of CSCs with two different phenotypes with or without GFP expression under control of the Nanog promoter. Bioinformatic analysis of gene expression profiles suggested constitutive autocrine activation of the FGF receptor, integrins, focal adhesions, and PI3K/AKT pathways. FGF2 could potently initiate cancer as a component of the inflammatory microenvironment.

9.
Cancers (Basel) ; 12(6)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466563

ABSTRACT

"Combination therapy", which is a treatment modality combining two or more therapeutic agents, is considered a cornerstone of cancer therapy. The combination of anticancer drugs, of which functions are different from the other, enhances the efficiency compared to the monotherapy because it targets cancer cells in a synergistic or an additive manner. In this study, the combination of paclitaxel and sorafenib in low concentration was evaluated to target cancer stem cells, miPS-BT549cmP and miPS-Huh7cmP cells, developed from mouse induced pluripotent stem cells. The synergistic effect of paclitaxel and sorafenib on cancer stem cells was assessed by the inhibition of proliferation, self-renewal, colony formation, and differentiation. While the IC50 values of paclitaxel and sorafenib were approximately ranging between 250 and 300 nM and between 6.5 and 8 µM, respectively, IC50 of paclitaxel reduced to 20 and 25 nM, which was not toxic in a single dose, in the presence of 1 µM sorafenib, which was not toxic to the cells. Then, the synergistic effect was further assessed for the potential of self-renewal of cancer stem cells by sphere formation ability. As a result, 1 µM of sorafenib significantly enhanced the effect of paclitaxel to suppress the number of spheres. Simultaneously, paclitaxel ranging in 1 to 4 nM significantly suppressed not only the colony formation but also the tube formation of the cancer stem cells in the presence of 1 µM sorafenib. These results suggest the combination therapy of paclitaxel and sorafenib in low doses should be an attractive approach to target cancer stem cells with fewer side effects.

10.
Bioengineering (Basel) ; 6(3)2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31450740

ABSTRACT

Metastasis develops when cancer cells spread from the primary site of a malignant tumor to the surrounding and distant tissues, and it is the most critical problem in cancer treatment. Our group developed cancer stem cells (CSCs) from induced pluripotent stem cells (iPSCs) in the presence of a conditioned medium (CM) of cancer-derived cells. The CSCs were characterized by the formation of malignant tumors in vivo, followed by metastasis. In this study, CSCs converted from mouse iPSCs in the presence of CM from hepatocellular carcinoma (HCC) cell line Huh7 cells. These converted cells (miPS-Huh7cm cells) were established as the metastatic cells. The generated CSCs were injected into the liver or spleen of nude mice. Almost one month after transplantation, the tumors were excised, and the primary cultured cells derived from the malignant tumors and metastatic nodules were evaluated by stemness and metastatic markers to compare their differences. The miPS-Huh7cm cells exhibited metastatic potential, and efficiently formed malignant tumors with lung and/or liver lesions in vivo, whereas the injected miPS formed teratoma. The primary cultured cells derived from the malignant tumors and metastatic nodules sustained the expression of stemness markers, such as Nanog, Klf4 and c-Myc, and acquired cancer stem markers, such as CD90, CD44 and ALDH1. Simultaneously, the expression of metastatic markers, such as Slug, Twist1 and vimentin, in primary cells derived from the malignant tumors, was higher than in metastatic nodules. The CSCs derived from iPSCs, forming malignant tumors and displaying high metastasis, will provide a good animal model to study the mechanisms of metastasis.

11.
Cancers (Basel) ; 12(1)2019 Dec 29.
Article in English | MEDLINE | ID: mdl-31905766

ABSTRACT

Cancer stem cells (CSCs) represent the subpopulation of cancer cells with the ability to differentiate into other cell phenotypes and initiated tumorigenesis. Previously, we reported generating CSCs from mouse induced pluripotent stem cells (miPSCs). Here, we investigated the ability of the CSCs to differentiate into hematopoietic cells. First, the primary cells were isolated from malignant tumors that were formed by the CSCs. Non-adherent cells (NACs) that arose from adherent cells were collected and their viability, as well as the morphology and expression of hematopoietic cell markers, were analyzed. Moreover, NACs were injected into the tail vein of busulfan conditioned Balb/c nude mice. Finally, CSCs were induced to differentiate to macrophages while using IL3 and SCF. The round nucleated NACs were found to be viable, positive for hematopoietic lineage markers and CD34, and expressed hematopoietic markers, just like homing to the bone marrow. When NACs were injected into mice, Wright-Giemsa staining showed that the number of white blood cells got higher than those in the control mice after four weeks. CSCs also showed the ability to differentiate toward macrophages. CSCs were demonstrated to have the potential to provide progenies with hematopoietic markers, morphology, and homing ability to the bone marrow, which could give new insight into the tumor microenvironment according to the plasticity of CSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...